• Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water according to the following equation.

$$2NO(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$$

The following rate data were collected at 225 °C.

Experiment	[NO] ₀ (M)	$[H_2]_0(M)$	Initial rate (d[NO]/dt, M s ⁻¹)
1	6.4×10^{-3}	$2.2 imes 10^{-3}$	$2.6 imes 10^{-5}$
2	$1.3 imes 10^{-2}$	$2.2 imes 10^{-3}$	$1.0 imes 10^{-4}$
3	6.4×10^{-3}	4.4×10^{-3}	$5.1 imes 10^{-5}$

Determine the rate law for the reaction.

Between experiments (1) and (2), $[H_2]_0$ is constant and $[NO]_0$ doubles. As the rate increases by a factor of $\frac{1.0 \times 10^{-4}}{2.6 \times 10^{-5}} = 3.8 \sim 4$, the rate is second order with respect to $[NO]_0$. Between experiments (1) and (3), $[H_2]_0$ doubles and $[NO]_0$ is constant. As the rate increases by a factor of $\frac{5.1 \times 10^{-5}}{2.6 \times 10^{-5}} = 2.0$, the rate is first order with respect to $[NO]_0$. Overall,

rate = $k[NO]^2[H_2]$

Calculate the value of the rate constant at 225 °C.

Using experiment (1), $2.6 \times 10^{-5} \text{ M s}^{-1} = k \times (6.4 \times 10^{-3} \text{ M})^2 \times (2.2 \times 10^{-3} \text{ M})$ $k = 2.9 \times 10^2 \text{ M}^{-2} \text{ s}^{-1}$ Answer: $k = 2.9 \times 10^2 \text{ M}^{-2} \text{ s}^{-1}$

Calculate the rate of appearance of N₂O when $[NO] = [H_2] = 6.6 \times 10^{-3}$ M.

rate of disappearance of NO =
$$k[NO]^{2}[H_{2}]$$

= $(2.9 \times 10^{2} \text{ M}^{2} \text{ s}^{-1}) \times (6.6 \times 10^{-3} \text{ M})^{2} \times (6.6 \times 10^{-3} \text{ M})$
= $8.3 \times 10^{-5} \text{ M s}^{-1}$

The rate of appearance of N_2O is *half* this value as, from the chemical equation, NO is disappearing at twice the rate than N_2O is appearing.

Answer: $4.1 \times 10^{-5} \text{ M s}^{-1}$

ANSWER CONTINUES ON THE NEXT PAGE

Marks 5 Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

Step 1: $2NO(g) \rightleftharpoons N_2O_2(g)$ This is a fast equilibrium and so $K = \frac{[N_2O_2(g)]}{[NO(g)]^2}$ or $[N_2O_2(g)] = K[NO(g)]^2$ Step 2: $N_2O_2(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$ slow (*i.e.* rate determining) As this is rate determining, rate = $k_2[N_2O_2][H_2]$ As $[N_2O_2(g)] = K[NO(g)]^2$, this can be rewritten as, rate= $kK[NO]^2[H_2]$ This is consistent with the experimentally determined rate law with $k_{exp} = k_2K$.