Marks 4

• The ocean contains a variety of forms of CO_3^{2-} and CO_2 with a variety of acid-base and solubility equilibria determining their concentrations. There is concern that increasing levels of CO₂ will lead to increased dissolution of CaCO₃ and critically affect the survival of life forms that rely on a carbonaceous skeleton. Calculate the concentrations of Ca^{2+} and CO_3^{2-} in a saturated solution of CaCO₃. (The K_{sp} of CaCO₃ is 3.3×10^{-9} .) The dissolution of CaCO₃ follows the reaction, $CaCO_3(s) \rightarrow Ca^{2+}(aq) + CO_3^{2-}(aq)$ If the molar solubility of CaCO₃ is S then $[Ca^{2+}(aq)] = [CO_3^{2-}(aq)] = S$. The solubility product is given by: $K_{sp} = [Ca^{2+}(aq)][CO_3^{2-}(aq)] = (S).(S) = S^2$ As $K_{\rm sp} = 3.3 \times 10^{-9}$, $S^2 = 3.3 \times 10^{-9}$ or $S = 5.7 \times 10^{-5}$ M $[CO_3^{2-}] = 5.7 \times 10^{-5} M$ $[Ca^{2+}] = 5.7 \times 10^{-5} M$ Calculate the pH of such a solution. (The pK_a of HCO₃⁻ is 10.33). CO_3^{2-} is a weak base and will react with water to produce HCO_3^{--} : CO_{3}^{2} HCO₃ H_2O OH. _

initial	5.7×10^{-5}	large	0	0
change	- <i>x</i>	negligible	+ <i>x</i>	+ <i>x</i>
final	$5.7 \times 10^{-5} - x$	large	x	x

The equilibrium constant K_b is given by:

$$K_{\rm b} = \frac{[\rm OH^{-}(aq)][\rm HCO_{3}^{-}(aq)]}{[\rm CO_{3}^{2-}(aq)]} = \frac{x^2}{5.7 \times 10^{-5} - x}$$

As $pK_a + pK_b = 14.00$, $pK_b = 14.00 - 10.33 = 3.67$. As $pK_b = -\log K_b$, so

$$K_{\rm b} = 10^{-3.67}$$
.

ANSWER CONTINUES ON THE NEXT PAGE

As the concentration of the base is so small, the 'small x' approximation cannot be used and it is necessary to solve the quadratic equation. From above,

 $x^{2} + 10^{-3.67}x - (5.7 \times 10^{-5} \times 10^{-3.67}) = 0$

Solving this using the quadratic formula gives $x = 4.67 \times 10^{-5} = [OH^{-1}(aq)]$. Hence,

 $pOH = -log_{10}[OH^{-}(aq)] = 4.33$

Finally, since pH + pOH = 14.00,

pH = 14.00 - 4.33 = 9.67

pH = **9.67**

THIS QUESTION CONTINUES ON THE NEXT PAGE