	1704	2000 11 0		1001 2000
	(CH ₃) ₃ ($CBr + OH^{-} \rightarrow$		Marks 5
The follow	wing rate data were co	ollected at 55 °C.		
Experiment	$[(CH_3)_3CBr]_0(M)$	$[OH^{-}]_{0}(M)$	Initial rate (d[(CH ₃) ₃ COH]/dt, M s ^{-1})	
1	0.050	0.10	5.0×10^{-4}	
2	0.20	0.10	2.0×10^{-3}	
3	0.20	0.30	2.0×10^{-3}	
Determine	the rate law for the rea	action.		
[(CH ₃) ₃ CB Between ex factor of 3 [OH ⁻] ₀ . Overall, ra Calculate th	r]. xperiments (2) and (3), [CH ₃) ₃ CBr] ₍ change in the r nstant at 55 °C.	g by a factor of 4: rate α o is constant. [OH ⁻] ₀ is increased by a rate. The rate is independent of	
For experin	nent 1, rate = $5 \times 10^{\circ}$	⁴ M s ⁻¹ and [(CI	$H_{3}_{3}CBr] = 0.050 M and so$	
k = (5 >	$\times 10^{-4} \mathrm{M s^{-1}}) / (0.050 \mathrm{M s^{-1}})$	$M) = 1.0 \times 10^{-2} s$	-1	
		Ansv	wer: $k = 1.0 \times 10^{-2} \text{ s}^{-1}$	-
Suggest a p Explain you		or the reaction ba	sed on the form of the rate law.	
rate deter The rate i	mining step.	nal to [(CH ₃) ₃ CH	that it is involved in a step after the Br] suggesting that a rate determining	
A possible	e mechanism is:			
	$(CH_3)_3Br \rightarrow (CH_3)_3^+$ $(CH_3)_3^+ + OH^- \rightarrow (CH_3)_3^+$		slow fast	