CHEM1902/1904 2008-N-7 November 2008

3

• A 300.0 mL solution of HCl has a pH of 1.22. Given that the p K_a of iodic acid, HIO₃, is 0.79, how many moles of sodium iodate, NaIO₃, would need to be added to this solution to raise its pH to 2.00?

Using pH =
$$-log_{10}[H^{+}(aq)]$$
,
$$[H^{+}(aq)]_{initial} = 10^{-1.22} = 0.060 \text{ M}$$

$$[H^{+}(aq)]_{final} = 10^{-2.00} = 0.010 \text{ M}$$

Using pH =
$$-\log_{10}[H^+(aq)]$$
,

$$[H^{+}(aq)]_{initial} = 10^{-1.22} = 0.060 M$$

$$[H^{+}(aq)]_{final} = 10^{-2.00} = 0.010 M$$

The change of (0.060 - 0.010 M) = 0.050 M occurs due to the reaction with IO_3^- (aq) to produce $HIO_3(aq)$. If $[IO_3^-(aq)] = x$, the reaction table is:

	H ⁺ (aq) +	IO ₃ -(aq)	-	HIO ₃ (aq)
initial	0.060	x		0
change	-0.050	-0.050		+0.050
final	0.010	x - 0.050		0.050

As
$$pK_a = 0.79 = -\log_{10}K_a$$
:

$$K_{\rm a} = \frac{[{\rm H}^{+}({\rm aq})][{\rm IO}_{3}^{-}({\rm aq})]}{[{\rm HIO}_{3}({\rm aq})]} = \frac{(0.010)\times(x-0.050)}{0.050} = 10^{-0.79}$$

Thus, $x = 0.86 \text{ M} = [\text{IO}_3(\text{aq})]_{\text{initial}}$. This concentration corresponds to a 300.0 mL solution so the number of moles that have been added is:

number of moles = concentration
$$\times$$
 volume
= (0.86 M) \times (0.3000 L) = 0.26 mol

Answer: 0.26 mol