• 2-Bromo-2-methylpropane reacts with hydroxide ions to give 2-methyl-2-propanol.

Marks 5

$$(CH_3)_3CBr + OH^- \rightarrow (CH_3)_3COH$$

The following rate data were collected at 55 °C.

Experiment	$[(CH_3)_3CBr]_0(M)$	$[OH^{-}]_{0}(M)$	Initial rate (d[(CH ₃) ₃ COH]/dt, M s ⁻¹)
1	0.050	0.10	5.0×10^{-4}
2	0.20	0.10	2.0×10^{-3}
3	0.20	0.30	2.0×10^{-3}

Experiment	[(CH3)3CBr]0 (M)	$[OH^{-}]_{0}(M)$	Initial rate (d[(CH ₃) ₃ COH]/dt, M s ⁻¹)
1	0.050	0.10	5.0×10^{-4}
2	0.20	0.10	2.0×10^{-3}
3	0.20	0.30	2.0×10^{-3}
Determine t	the rate law for the rea	action.	
Calculate th	ne value of the rate co	nstant at 55 °C.	
		Ansv	
Suggest a p Explain you		or the reaction bas	sed on the form of the rate law.