When cobalt(II) chloride is reacted with ethane-1,2-diamine (en) and the product oxidised in the air, a purple compound with the empirical formula $CoCl_3$ ·2en is otained. When reacted with silver nitrate only one chloride ion is released. The ompound can be resolved into its enantiomeric forms.
Give the structural formula of the compound.
[CoCl ₂ (en) ₂]Cl
1 chloride ion must be a counter ion as only 1 is released when silver nitrate is added. As en is neutral, it must be coordinate to the metal ion.
Give the name of the compound.
cis-dichloridobis(ethane-1,2-diamine)cobalt(III) chloride
Although the structural formula above gives rise to <i>cis</i> and <i>trans</i> isomers, only the <i>cis</i> form is optically active.
Draw the structure of the metal complex component of the compound.
$ \begin{array}{c c} $
What is the <i>d</i> electron configuration of the Co in this complex?
$[CoCl_2(en)_2]Cl = Co^{3+} + 2en + 3Cl$. As Co is in group 9, it has 9 valence electrons. Co^{3+} has $(9-3) = 6$ electrons: $3d^6$
What types of isomers can be formed by a compound with this empirical formula?
Geometrical (cis and trans) isomers are possible.
The <i>cis</i> isomer can form optical isomers.
Which of the possible isomers has formed? Explain the logic you have used in determining this.
As only the <i>cis</i> isomer can form enantiomers, it must have been formed.