Marks

7

• Nitrogen monoxide, a noxious pollutant, reacts with oxygen to produce nitrogen dioxide, another toxic gas:

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

The following rate data were collected at 225 °C.

Experiment	[NO] ₀ (M)	$[O_2]_0(M)$	Initial rate, $-d[O_2]/dt$, (M s ⁻¹)
1	1.3×10^{-2}	1.1×10^{-2}	1.6×10^{-3}
2	1.3×10^{-2}	2.2×10^{-2}	3.2×10^{-3}
3	2.6×10^{-2}	1.1×10^{-2}	6.4×10^{-3}

Determine the rate law for the reaction.

Between experiments 1 and 2, [NO] is held constant and $[O_2]$ doubles. This leads to a doubling of the rate: the reaction is 1^{st} order with respect to O_2 .

Between experiments 1 and 3, $[O_2]$ is held constant and [NO] doubles. This leads to the rate increasing by a factor of 4: the rate is 2^{nd} order with respect to NO.

The rate law is therefore:

 $-\mathbf{d}[\mathbf{O}_2]/\mathbf{dt} = k[\mathbf{NO}]^2[\mathbf{O}_2]$

Calculate the value of the rate constant at 225 °C.

In experiment 1, $[NO] = 1.3 \times 10^{-2}$ M, $[O_2] = 1.1 \times 10^{-2}$ M and rate $= 1.6 \times 10^{-3}$ M s⁻¹. Substituting these values into the rate law gives:

 $(1.6 \times 10^{-3} \text{ M s}^{-1}) = k \times (1.3 \times 10^{-2} \text{ M})^2 \times (1.1 \times 10^{-2} \text{ M})$

Hence:

 $k = 860 \text{ M}^{-2} \text{ s}^{-1}$

Answer: 860 $M^{-2} s^{-1}$

Calculate the rate of appearance of NO₂ when [NO] = $[O_2] = 6.5 \times 10^{-3}$ M.

Substituting the values into the rate law gives:

$$-\mathbf{d}[\mathbf{O}_2]/\mathbf{dt} = k[\mathbf{NO}]^2[\mathbf{O}_2]$$

= $(860 \text{ M}^{-2} \text{ s}^{-1}) \times (6.5 \times 10^{-3} \text{ M})^2 \times (6.5 \times 10^{-3} \text{ M}) = 2.35 \times 10^{-4} \text{ M s}^{-1}$

From the chemical equation, the rate of appearance of NO₂ is *twice* the rate of loss of O₂:

$$d[NO_2]/dt = 2 \times -d[O_2]/dt = (2 \times 2.35 \times 10^{-4} \text{ M s}^{-1}) = 4.7 \times 10^{-4} \text{ M s}^{-1}$$
Answer: $4.7 \times 10^{-4} \text{ M s}^{-1}$

ANSWER CONTINUES ON THE NEXT PAGE

Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

A possible mechanism is: Step 1: NO + NO \implies N₂O₂ fast equilibrium Step 2: N₂O₂ + O₂ \rightarrow 2NO₂ slow (*i.e.* rate determining) If the first step is at equilibrium with equilibrium constant K₁: $K_1 = \frac{[N_2O_2]}{[NO]^2} \Rightarrow [N_2O_2] = K_1[NO]^2$ The rate of step 2 is therefore rate = k₂[N₂O₂][O₂] = k₂K₁[NO]²[O₂] This is consistent with the experiment rate law with $k = k_1K$.