
Marks 5

• The diagram below shows the structure of an alloy of copper and gold with a gold atom at each of the corners and a copper atom in the centre of each of the faces. The unit cell dimension (edge length, *a*) for this alloy is 0.36 nm.

$$\bigcirc$$
 = Au

$$\bigcirc$$
 = Cu

What is the chemical formula of the alloy?

There are 8 Au atoms on the corners. Each of these contribute 1/8 to the unit cell:

number of Au atoms = $8 \times 1/8 = 1$

There are 6 Cu atoms on the face. Each of these contribute 1/2 to the unit cell:

number of Cu atoms = $6 \times 1/2 = 3$

The ratio of Cu to Au atoms is therefore 3:1 and the formula is Cu₃Au.

Answer: Cu₃Au

Given that pure gold is 24 carat and gold alloyed with 25% by weight of another metal is termed 18 carat gold, what carat gold is this alloy?

The molar mass of Cu₃Au is:

molar mass =
$$(3 \times 63.55 \text{ (Cu)} + 1 \times 196.97 \text{ (Au)}) \text{ g mol}^{-1} = 387.62 \text{ g mol}^{-1}$$
.

As 1 mol of Cu_3Au contains 1 mol of Au, the percentage by weight of gold in Cu_3Au is:

percentage by weight =
$$\frac{197.67}{387.62} \times 100 \% = 50 \%$$

As a 100 % alloy is 24 carat and a 75% alloy is 18 carat, a 50 % alloy is 12 carat.

Answer: 12 carat

What is the volume of the unit cell?

As the unit cell is cubic:

volume = (side length)³ =
$$a^3$$
 = $(0.36 \times 10^{-9} \text{ m})^3$ = $4.7 \times 10^{-29} \text{ m}^3$

Answer: $4.7 \times 10^{-29} \text{ m}^3$

CHEM1902/1904 2009-N-6 November 2009

What is the density of the alloy?

From above, the unit cell contains 1 Au atom and 3 Cu atoms:

mass of gold = 196.97 g mol⁻¹ / 6.022 ×
$$10^{23}$$
 mol⁻¹ = 3.271 × 10^{-22} g mass of copper = 3 × 63.55 g mol⁻¹ / 6.022 × 10^{23} mol⁻¹ = 3.166 × 10^{-22} g mass of unit cell = (3.271 × 10^{-22} + 3.166 × 10^{-22}) g = 6.437 × 10^{-22} g

The density is therefore:

density = mass / volume
$$= 6.437 \times 10^{-22} \, \text{g} \, / \, 4.7 \times 10^{-29} \, \text{m}^3 = 1.4 \times 10^7 \, \text{g m}^{-3}$$
 As 1 m = 100 cm, 1 m³ = (100)³ cm³ = 10⁵ cm³: density = 14 g cm⁻³

Answer: 14 g cm⁻³