• Boric acid, $B(OH)_3$, is a weak acid ($pK_a = 9.24$) that is used as a mild antiseptic and eye wash. Unusually, the Lewis acidity of the compound accounts for its Brønsted acidity. By using an appropriate chemical equation, show how this compound acts as a Brønsted acid in aqueous solution.

Marks 9

The boron atom in B(OH)₃ is electron deficient. It acts as a Lewis acid by readily accepting the lone pair from the oxygen in a water molecule to go from sp^2 to sp^3 hybridisation.

Solution A consists of a 0.050 M aqueous solution of boric acid at 25 $^{\circ}$ C. Calculate the pH of Solution A.

As boric is a weak acid, $[H_3O^+]$ must be calculated using a reaction table (acid = $B(OH)_3$ and base = $B(OH)_2^-$)

	acid	H ₂ O	+	H_3O^+	base
initial	0.050	large		0	0
change	-x	negligible		+x	+x
final	0.050 - x	large		x	x

The equilibrium constant
$$K_a$$
 is given by: $K_a = \frac{[H_3 O^+][base]}{[acid]} = \frac{x^2}{0.050 - x}$

As p K_a = -log₁₀ K_a , K_a = 10^{-9.24} and is very small, 0.050 – x ~ 0.050 and hence:

$$x^2 = 0.050 \times 10^{-9.24}$$
 or $x = 5.36 \times 10^{-6} \text{ M} = [\text{H}_3\text{O}^+]$

Hence, the pH is given by:

$$pH = -log_{10}[H_3O^+] = -log_{10}(5.36 \times 10^{-6}) = 5.27$$

$$pH = 5.27$$

At 25 °C, 1.00 L of Solution B consists of 10.18 g of NaB(OH)₄ dissolved in water. Calculate the pH of Solution B.

The molar mass of NaB(OH)₃ is:

molar mass =
$$[22.99 \text{ (Na)} + 10.81 \text{ (B)} + 4 (16.00 \text{ (O)} + 1.008 \text{ (H)})] \text{ g mol}^{-1}$$

= $101.83 \text{ g mol}^{-1}$

A mass of 10.18 g therefore corresponds to:

number of moles = mass / molar mass = $10.18 \text{ g} / (101.83 \text{ g mol}^{-1}) = 0.100 \text{ mol}$

A 1.00 L solution contains this amount has a concentration of 0.100 M.

As it is a weak base, [OH-] must be calculated by considering the equilibrium:

	base	H ₂ O	1	acid	OH.
initial	0.100	large		0	0
change	- <i>y</i>	negligible		+ <i>y</i>	+ <i>y</i>
final	0.10 - y	large		y	y

The equilibrium constant K_b is given by:

$$K_{\rm b} = \frac{[\rm acid][OH^-]}{[\rm base]} = \frac{y^2}{(0.100 - y)}$$

For an acid and its conjugate base:

$$pK_a + pK_b = 14.00$$

$$pK_b = 14.00 - 9.24 = 4.76$$

As $pK_b = 4.76$, $K_b = 10^{-4.76}$. K_b is very small so $0.100 - y \sim 0.100$ and hence:

$$y^2 = 0.100 \times 10^{-4.76}$$
 or $y = 0.00132$ M = [OH⁻]

Hence, the pOH is given by:

$$pOH = -log_{10}[OH^{-}] = log_{10}[0.00132] = 2.88$$

Finally, pH + pOH = 14.00 so

$$pH = 14.00 - 2.88 = 11.12$$

$$pH = 11.12$$

Using both Solutions A and B, calculate the volumes (mL) required to prepare a 1.0 L solution with a pH = 8.50.

The ratio of acid to conjugate base needed can be calculated using the Henderson-Hasselbalch equation, $pH = pK_a + log \frac{[base]}{[acid]}$:

$$8.50 = 9.24 + log \frac{[base]}{[acid]}$$
 so $\frac{[base]}{[acid]} = 10^{-0.74} = 0.182$

CHEM1902/4 2012-N-3 November 2012

A volume $V_{\rm a}$ of the acid and $V_{\rm b}$ of base are added together to give a solution with a total volume of 1.0 L so:

$$V_{\rm a} + V_{\rm b} = 1.0 \; {\rm L}$$

Using $c_1V_1 = c_2V_2$, this mixing reduces the concentration of both:

acid:
$$(0.050 \text{ M}) \times V_a = c_{acid} \times (1.0 \text{ L})$$
 so $V_a = 20. \times c_{acid}$
base: $(0.100 \text{ M}) \times V_b = c_{base} \times (1.0 \text{ L})$ so $V_b = 10.0 \times c_{base}$

Using the concentration ratio from the Henderson-Hasselbalch equation above, the ratio of the volumes needed is therefore:

$$V_{\rm b}$$
 / $V_{\rm a}$ = (10.0 / 20.) × $c_{\rm base}$ / $c_{\rm acid}$ = (10. / 20.) × 0.182 = 0.0910

or

$$V_{\rm b} = 0.0910 \times V_{\rm a}$$

From above, $V_a + V_b = 1.0 \text{ L so}$:

$$V_{\rm a} + (0.0910 \times V_{\rm a}) = 1.0 \ {\rm L}$$

1.0091 $V_{\rm a} = 1.0 \ {\rm L}$
 $V_{\rm a} = 0.917 \ {\rm L}$

Hence, $V_b = 0.083$ L.