- CHEM1902/4
- Four experiments were conducted to discover how the initial rate of consumption of BrO₃⁻ ions in the reaction below varied as the concentrations of the reactants were changed.

Experiment	Initial concentration (mol L^{-1})			Initial rate
	$\mathrm{BrO_3}^-$	Br^{-}	H^{+}	$(\text{mol } L^{-1} s^{-1})$
1	0.10	0.10	0.10	1.2×10^{-3}
2	0.20	0.10	0.10	2.4×10^{-3}
3	0.10	0.30	0.10	3.5×10^{-3}
4	0.20	0.10	0.15	5.4×10^{-3}

 $BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$

Use the experimental data in the table above to determine the order of the reaction with respect to *each* reactant.

Between experiments (1) and (3), $[Br^{-}]$ and $[H^{+}]$ are kept constant but $[BrO_{3}^{-}]$ is doubled. This doubles the rate: the rate is proportional to $[BrO_{3}^{-}]^{1}$ and so is first order with respect to BrO_{3}^{-} .

Between experiments (2) and (4), $[BrO_3^-]$ and $[Br^-]$ are kept constant but $[H^+]$ is increased by a factor of (0.15/0.10) = 1.5. This increases the rate by a factor of $(5.4 \times 10^{-3} / 2.4 \times 10^{-3}) = 2.25$: the rate is proportional to $[H^+]^2$ as $(1.5)^2 = 2.25$ and so is second order with respect to H^+ .

Between experiments (1) and (2), $[BrO_3^-]$ and $[H^+]$ are kept constant but $[Br^-]$ is increased by a factor of 3. This increases the rate by a factor of $(3.5 \times 10^{-3} / 1.2 \times 10^{-3}) = 2.9$: the rate is proportional to $[Br^-]^1$ and so is first order with respect to Br⁻.

Overall,

rate = $k[BrO_3^{-}][Br^{-}][H^{+}]^2$

What is the rate of formation of Br_2 when $[BrO_3^-] = [Br^-] = [H^+] = 0.10$ M?

From the table, when $[BrO_3^-] = [Br^-] = [H^+] = 0.10$ M, the rate of consumption of BrO_3^- is 1.2×10^{-3} M s⁻¹. From the chemical equation, Br_2 is produced at three times this rate.

The rate of production of Br₂ is 3.6×10^{-3} M s⁻¹.

Write the rate law for the reaction and determine the value of the rate constant, k.

From above, rate = $k[BrO_3^-][Br^-][H^+]^2$. Using experiment (1):

ANSWER CONTINUES ON THE NEXT PAGE

rate = $k[BrO_3^{-}][Br^{-}][H^{+}]^2$ = $k(0.10 \text{ M})(0.10 \text{ M})(0.10 \text{ M})^2 = k(0.00010 \text{ M}^4) = 1.2 \times 10^{-3} \text{ M s}^{-1}$

So,

$$k = (1.2 \times 10^{-3} \text{ M s}^{-1}) / (0.00010 \text{ M}^3) = 12 \text{ M}^{-3} \text{ s}^{-1}$$