7

• Four experiments were conducted to discover how the initial rate of consumption of BrO₃⁻ ions in the reaction below varied as the concentrations of the reactants were changed.

BrO ₃	+	$5Rr^{-}$	+	$6H^{+}$	\rightarrow	$3Rr_2$	+	$3H_2O$
DIO3		JDI		UII	_	יוטנ	- 1	31170

Experiment	Initial co	ncentration	Initial rate	
	BrO ₃	Br^-	H^{+}	$(\text{mol } L^{-1} \text{ s}^{-1})$
1	0.10	0.10	0.10	1.2×10^{-3}
2	0.20	0.10	0.10	2.4×10^{-3}
3	0.10	0.30	0.10	3.5×10^{-3}
4	0.20	0.10	0.15	5.4×10^{-3}

Use the experimental data in the table above to determine the order of the reaction with respect to *each* reactant.

What is the rate of formation of Br_2 when $[BrO_3^-] = [Br^-] = [H^+] = 0.10$ M?

Write the rate law for the reaction and determine the value of the rate constant, k.