7 • Four experiments were conducted to discover how the initial rate of consumption of BrO₃⁻ ions in the reaction below varied as the concentrations of the reactants were changed. | BrO ₃ | + | $5Rr^{-}$ | + | $6H^{+}$ | \rightarrow | $3Rr_2$ | + | $3H_2O$ | |------------------|---|-----------|---|----------|---------------|---------|-----|---------| | DIO3 | | JDI | | UII | _ | יוטנ | - 1 | 31170 | | Experiment | Initial co | ncentration | Initial rate | | |------------|------------------|-----------------|--------------|---------------------------------------| | | BrO ₃ | Br^- | H^{+} | $(\text{mol } L^{-1} \text{ s}^{-1})$ | | 1 | 0.10 | 0.10 | 0.10 | 1.2×10^{-3} | | 2 | 0.20 | 0.10 | 0.10 | 2.4×10^{-3} | | 3 | 0.10 | 0.30 | 0.10 | 3.5×10^{-3} | | 4 | 0.20 | 0.10 | 0.15 | 5.4×10^{-3} | Use the experimental data in the table above to determine the order of the reaction with respect to *each* reactant. What is the rate of formation of Br_2 when $[BrO_3^-] = [Br^-] = [H^+] = 0.10$ M? Write the rate law for the reaction and determine the value of the rate constant, k.