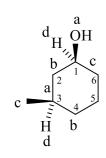
What is the systematic name for **G**?

Marks 6


3-methylcyclohexanol

How many configurational stereoisomers of **G** are there?

4

Assign the absolute configuration of stereoisomer G_1 below. Show your working.

 C_1 : (S)- Around C_1 , the order of priorities is: a: O > b: $C_2(C,H,H) > c$: $C_6(C,H,H) > d$: H To distinguish between C_2 and C_6 , compare next C in chain b: $C_3(C,C,H) > c$: $C_5(C,H,H)$ Looking down C_1 -H bond, a \rightarrow b \rightarrow c is anticlockwise

C₃: (R)- Around C₃, the order of priorities is: a: C₂(C,H,H) > b: C₄(C,H,H) > c: C_{methyl}(H,H,H) > d: H As C₂ and C₄ are equivalent, C₁ > C₅ is used to prioritise them. Looking down C₃-H bond, a \rightarrow b \rightarrow c is clockwise

Draw G_2 (the enantiomer of G_1) and G_3 (a diastereomer of G_1)

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.