• Benzene, pyridine and pyrrole are all aromatic.

pyridine

pyrrole

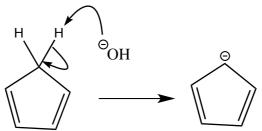
cyclopentadiene $pK_a = 15$

cyclopentene $pK_a = 45$

What three criteria must be met for a compound to be aromatic?

- Cyclic and planar,
- Each atom in the ring must have be sp^2 hybridised so that it has a p-orbital perpendicular to the ring and
- The π system must have 4n+2 electrons where n is any integer.

Apply your previous answer to explain the following.


Pyridine is basic but pyrrole is not.

The N in pyridine contributes $1 e^-$ to π system which adds to the $5 e^-$ from the carbon atoms to give an aromatic electron count of 6. The lone pair on N is in an sp^2 hybrid, pointing out from the molecule and lying in the plane. It is not involved in the π system and is free to attach a proton. It is basic.

The N atom in pyrrole uses its 'lone pair' in the π system to add to the 4 e⁻ from the carbon atoms to give an aromatic electron count of 6. The 'lone pair' is in a p-orbital and is part of the π bonding. It is not available to attach a proton. It is not basic.

The pK_a of cyclopentadiene is much lower than that of cyclopentene.

Cyclopentadiene, C_5H_6 is not aromatic; there is a CH_2 group in the ring and it is not planar. Lose of a proton to give $C_5H_5^-$ however leads to a lone pair on one carbon atom. Adopting a planar geometry gives $6\,\pi$ electrons and an aromatic molecul

The analogous reaction for cyclopentene does not lead to an aromatic system as there are still CH_2 groups in the ring and it is not planar.

The additional aromatic stabilisation of the conjugate base of cyclopentadiene increases its acidity and lowers its pK_a .

Marks 6