Marks

Benzene can undergo an S_EAr reaction with bromine, Br₂, as shown below.
 Demonstrate your understanding of this reaction by adding curly arrows to complete the mechanism.

Explain what each part of the abbreviation S_EAr means.

S = substitution

E = electrophilic

Ar = aromatic

Identify one nucleophile and one electrophile in the scheme above.

nucleophile

C=C in step (i). Br⁻ in step (ii)

electrophile

Br₂ in step (i). Carbocation in step (ii).

Iron(III) bromide, FeBr₃, is often added to the reaction shown above. Why?

It is a catalyst. Br₂ attaches weakly to it causing the non-polar Br-Br bond to become polarised with a partial positive charge on one end. This makes it more electrophilic.

2-Chloropyridine can undergo the following reaction with sodium cyanide.

This reaction also proceeds via a two-step mechanism and an ionic (*i.e.* charged) intermediate. Apply your understanding of organic reactions to propose a mechanism for this reaction.

If the reaction of benzene shown above is $S_E Ar$, how would you classify this reaction of chloropyridine?

S_NAr (nucleophilic)