• At a certain temperature the following data were collected for the decomposition of HI.

Marks 4

$$2HI \rightarrow H_2 + I_2$$

Experiment	Initial [HI] (mol L ⁻¹)	Initial rate of reaction (mol L ⁻¹ s ⁻¹)
1	1.0×10^{-2}	4.0×10^{-6}
2	2.0×10^{-2}	1.6×10^{-5}
3	3.0×10^{-2}	3.6×10^{-5}

Determine the rate law for the reaction.

Between experiment (1) and (2), the concentration of HI is doubled. This leads to the rate increasing by a factor of 4.

Between experiment (1) and (3), the concentration of HI is trebled. This leads the to rate increasing by a factor 9.

The rate is proportional to [HI]²:

rate =
$$k[HI]^2$$

What is the value of the rate constant for the decomposition of HI?

Using experiment (1), [HI] = 1.0×10^{-2} mol L⁻¹ and rate = 4.0×10^{-6} mol L⁻¹ s⁻¹:

rate =
$$k[HI]^2$$

4.0 × 10⁻⁶ mol L⁻¹ s⁻¹ = (k) × $(1.0 \times 10^{-2} \text{ mol L}^{-1})^2$

$$k = (4.0 \times 10^{-6} \text{ mol L}^{-1} \text{ s}^{-1}) / (1.0 \times 10^{-2} \text{ mol L}^{-1})^2 = 4.0 \times 10^{-2} \text{ mol}^{-1} \text{ L} \text{ s}^{-1}$$

Answer: $4.0 \times 10^{-2} \text{ mol}^{-1} \text{ L s}^{-1}$