- Boric acid, $\mathrm{B}(\mathrm{OH})_{3}$, is a weak acid $\left(\mathrm{p} K_{\mathrm{a}}=9.24\right)$ that is used as a mild antiseptic and eye wash. Unusually, the Lewis acidity of the compound accounts for its Brønsted acidity. By using an appropriate chemical equation, show how this compound acts as a Brønsted acid in aqueous solution.

The boron atom in $\mathrm{B}(\mathrm{OH})_{3}$ is electron deficient: it has 6 rather than 8 electrons in its valence shell. It acts as a Lewis acid by readily accepting the lone pair from the oxygen in a water molecule to go from $s p^{2}$ to $s p^{3}$ hybridisation.

Solution A consists of a 0.60 M aqueous solution of boric acid at $25^{\circ} \mathrm{C}$. Calculate the pH of Solution A.

As boric is a weak acid, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$must be calculated using a reaction table $\left(\mathbf{a c i d}=\mathbf{B}(\mathrm{OH})_{3}\right.$ and base $\left.=\mathbf{B}(\mathrm{OH})_{2}{ }^{-}\right)$

	acid	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathrm{H}_{3} \mathbf{O}^{+}$	base
initial	0.60	large		0	0
change	$-x$	negligible		$+x$	$+x$
final	$0.60-x$	large		x	x

The equilibrium constant K_{a} is given by: $K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\text {base }]}{[\text { acid }]}=\frac{x^{2}}{0.60-x}$
As $\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}, K_{\mathrm{a}}=10^{-9.24}$ and is very small, $0.60-x \sim 0.60$ and hence:

$$
x^{2}=0.60 \times 10^{-9.24} \quad \text { or } \quad x=1.86 \times 10^{-5} M=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Hence, the $\mathbf{p H}$ is given by:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log _{10}\left(1.86 \times 10^{-5}\right)=4.73
$$

$$
\mathrm{pH}=4.73
$$

At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 112 g of $\mathrm{NaB}(\mathrm{OH})_{4}$ dissolved in water. Calculate the pH of Solution B.

The molar mass of $\mathrm{NaB}(\mathrm{OH})_{3}$ is:

$$
\begin{aligned}
\text { molar mass }= & {[22.99(\mathrm{Na})+10.81(\mathrm{~B})+4(16.00(\mathrm{O})+1.008(\mathrm{H}))] \mathrm{g} \mathrm{~mol}^{-1} } \\
& =101.83 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

A mass of 112 g therefore corresponds to:

$$
\text { number of moles }=\text { mass } / \text { molar mass }=112 \mathrm{~g} /\left(101.83 \mathrm{~g} \mathrm{~mol}^{-1}\right)=1.10 \mathrm{~mol}
$$

A 1.00 L solution contains this amount has a concentration of 1.10 M .
As it is a weak base, $\left[\mathrm{OH}^{-}\right]$must be calculated by considering the equilibrium:

	base	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	acid	OH^{-}
initial	1.10	large		0	0
change	$-y$	negligible		$+y$	$+y$
final	$1.10-y$	large		y	y

The equilibrium constant K_{b} is given by:

$$
K_{\mathrm{b}}=\frac{[\text { acid }]\left[\mathrm{OH}^{-}\right]}{[\text {base }]}=\frac{y^{2}}{(1.10-y)}
$$

For an acid and its conjugate base:

$$
\begin{aligned}
& \mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\
& \mathrm{p} K_{\mathrm{b}}=14.00-9.24=4.76
\end{aligned}
$$

As $\mathrm{p} K_{\mathrm{b}}=4.76, K_{\mathrm{b}}=10^{-4.76} . K_{\mathrm{b}}$ is very small so $1.00-y \sim 1.00$ and hence:

$$
y^{2}=1.10 \times 10^{-4.76} \text { or } y=0.00437 \mathrm{M}=\left[\mathrm{OH}^{-}\right]
$$

Hence, the pOH is given by:

$$
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=\log _{10}[0.00437]=2.36
$$

Finally, $\mathbf{p H}+\mathbf{p O H}=14.00$ so

$$
\mathrm{pH}=14.00-2.36=11.64
$$

$$
\mathrm{pH}=\mathbf{1 1 . 6 4}
$$

Using both Solutions A and B, calculate the volumes (mL) required to prepare a 1.0 L solution with a $\mathrm{pH}=9.24$.

The ratio of acid to conjugate base in the final needed can be calculated using the Henderson-Hasselbalch equation, $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}$:

$$
9.24=9.24+\log \frac{[\text { base }]}{[\text { acid }]} \text { so } \frac{[\text { base }]}{[\text { acid }]}=1.00 \quad \text { or }[\text { base }]=[\text { acid }]
$$

A volume V_{a} of the acid and V_{b} of base are added together to give a solution with a total volume of 1.00 L so:

$$
V_{\mathrm{a}}+V_{\mathrm{b}}=1.00 \mathrm{~L}
$$

Using $c_{1} V_{1}=c_{2} V_{2}$, this mixing reduces the concentration of both:
acid: $\quad(0.60 \mathrm{M}) \times V_{\mathrm{a}}=c_{\text {acid }} \times(1.0 \mathrm{~L}) \quad$ so $V_{\mathrm{a}}=1.67 \times c_{\text {acid }}$
base: $(1.10 \mathrm{M}) \times V_{\mathrm{b}}=c_{\text {base }} \times(1.0 \mathrm{~L}) \quad$ so $V_{\mathrm{b}}=0.909 \times c_{\text {base }}$
Using the concentration ratio from the Henderson-Hasselbalch equation above, the ratio of the volumes needed is therefore:

$$
V_{\mathrm{b}} / V_{\mathrm{a}}=(0.909 / 1.67) \times c_{\text {base }} / c_{\text {acid }}=(0.909 / 1.67) \times 1.00=0.545
$$

or

$$
V_{\mathrm{b}}=0.545 \times V_{\mathrm{a}}
$$

From above, $V_{a}+V_{b}=1.00 \mathrm{~L}$ so:

$$
V_{\mathrm{a}}+\left(0.545 \times V_{\mathrm{a}}\right)=1.00 \mathrm{~L}
$$

$$
1.545 V_{\mathrm{a}}=1.00 \mathrm{~L}
$$

$$
V_{\mathrm{a}}=0.647 \mathrm{~L}
$$

Hence, $V_{b}=(1.00-0.647) L=0.35 L$.

- Boric acid, $\mathrm{B}(\mathrm{OH})_{3}$, is a weak acid $\left(\mathrm{p} K_{\mathrm{a}}=9.24\right)$ that is used as a mild antiseptic and eye wash. Unusually, the Lewis acidity of the compound accounts for its Brønsted acidity. By using an appropriate chemical equation, show how this compound acts as a Brønsted acid in aqueous solution.

The boron atom in $\mathrm{B}(\mathrm{OH})_{3}$ is electron deficient: it has 6 rather than 8 electrons in its valence shell. It acts as a Lewis acid by readily accepting the lone pair from the oxygen in a water molecule to go from $s p^{2}$ to $s p^{3}$ hybridisation.

Solution A consists of a 0.40 M aqueous solution of boric acid at $25^{\circ} \mathrm{C}$. Calculate the pH of Solution A.

As boric is a weak acid, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$must be calculated using a reaction table $\left(\operatorname{acid}=\mathrm{B}(\mathrm{OH})_{3}\right.$ and base $\left.=\mathrm{B}(\mathrm{OH})_{2}{ }^{-}\right)$

	acid	$\mathbf{H}_{2} \mathbf{O}$	\rightleftharpoons	$\mathbf{H}_{3} \mathbf{O}^{+}$	base
initial	0.40	large		0	0
change	$-x$	negligible		$+x$	$+x$
final	$0.40-x$	large		x	x

The equilibrium constant K_{a} is given by: $K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\text {base }]}{[\text { acid }]}=\frac{x^{2}}{0.40-x}$
As $\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}, K_{\mathrm{a}}=10^{9.24}$ and is very small, $0.40-x \sim 0.40$ and hence:

$$
x^{2}=0.40 \times 10^{-9.24} \quad \text { or } \quad x=1.52 \times 10^{-5} M=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Hence, the $\mathbf{p H}$ is given by:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log _{10}\left(1.52 \times 10^{-5}\right)=4.82
$$

$$
\mathrm{pH}=\mathbf{4 . 8 2}
$$

At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 101.8 g of $\mathrm{NaB}(\mathrm{OH})_{4}$ dissolved in water. Calculate the pH of Solution B.

The molar mass of $\mathrm{NaB}(\mathrm{OH})_{3}$ is:

$$
\begin{aligned}
\text { molar mass } & =[22.99(\mathrm{Na})+10.81(\mathrm{~B})+4(16.00(\mathrm{O})+1.008(\mathrm{H}))] \mathrm{g} \mathrm{~mol}^{-1} \\
& =101.83 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

ANSWER CONTINUES ON THE PAGE

A mass of 101.8 g therefore corresponds to:

$$
\text { number of moles }=\text { mass } / \text { molar mass }=101.8 \mathrm{~g} /\left(101.83 \mathrm{~g} \mathrm{~mol}^{-1}\right)=1.000 \mathrm{~mol}
$$

A 1.00 L solution contains this amount has a concentration of 1.00 M .
As it is a weak base, $\left[\mathrm{OH}^{-}\right]$must be calculated by considering the equilibrium:

	base	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	acid	OH^{-}
initial	1.00	large		0	0
change	$-y$	negligible		$+y$	$+y$
final	$1.00-y$	large		y	y

The equilibrium constant K_{b} is given by:

$$
K_{\mathrm{b}}=\frac{[\mathrm{acid}]\left[\mathrm{OH}^{-}\right]}{[\text {base }]}=\frac{y^{2}}{(1.00-y)}
$$

For an acid and its conjugate base:

$$
\begin{aligned}
& \mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\
& \mathrm{p} K_{\mathrm{b}}=14.00-9.24=4.76
\end{aligned}
$$

As $\mathrm{p} K_{\mathrm{b}}=4.76, K_{\mathrm{b}}=10^{-4.76}$. K_{b} is very small so $1.00-y \sim 1.00$ and hence:

$$
y^{2}=1.00 \times 10^{-4.76} \text { or } y=0.00417 \mathrm{M}=\left[\mathrm{OH}^{-}\right]
$$

Hence, the pOH is given by:

$$
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=\log _{10}[0.00417]=2.38
$$

Finally, $\mathbf{p H}+\mathbf{p O H}=\mathbf{1 4 . 0 0}$ so

$$
\mathrm{pH}=14.00-2.38=11.62
$$

$$
\mathrm{pH}=\mathbf{1 1 . 6 2}
$$

Using both Solutions A and B, calculate the volumes (mL) required to prepare a 1.0 L solution with a $\mathrm{pH}=8.00$.

The ratio of acid to conjugate base needed can be calculated using the
Henderson-Hasselbalch equation, $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}$:

$$
8.00=9.24+\log \frac{[\text { base }]}{[\text { acid }]} \text { so } \frac{[\text { base }]}{[\text { acid }]}=10^{-1.24}=0.0575
$$

ANSWER CONTINUES ON THE PAGE

A volume V_{a} of the acid and V_{b} of base are added together to give a solution with a total volume of 1.0 L so:

$$
V_{\mathrm{a}}+V_{\mathrm{b}}=1.0 \mathrm{~L}
$$

Using $c_{1} V_{1}=c_{2} V_{2}$, this mixing reduces the concentration of both:
acid: $(0.40 \mathrm{M}) \times V_{\mathrm{a}}=c_{\mathrm{acid}} \times(1.0 \mathrm{~L}) \quad$ so $V_{\mathrm{a}}=2.5 \times c_{\text {acid }}$
base: $(1.00 \mathrm{M}) \times V_{\mathrm{b}}=c_{\text {base }} \times(1.0 \mathrm{~L}) \quad$ so $V_{\mathrm{b}}=1.0 \times c_{\text {base }}$
Using the concentration ratio from the Henderson-Hasselbalch equation above, the ratio of the volumes needed is therefore:

$$
V_{\mathrm{b}} / V_{\mathrm{a}}=(1.0 / 2.5) \times c_{\text {base }} / c_{\text {acid }}=(1.0 / 2.5) \times 0.0575=0.023
$$

or

$$
V_{\mathrm{b}}=0.023 \times V_{\mathrm{a}}
$$

From above, $V_{\mathrm{a}}+\boldsymbol{V}_{\mathrm{b}}=1.0 \mathrm{~L}$ so:

$$
\begin{aligned}
& V_{\mathrm{a}}+\left(0.023 \times V_{\mathrm{a}}\right)=1.0 \mathrm{~L} \\
& 1.023 V_{\mathrm{a}}=1.0 \mathrm{~L} \\
& V_{\mathrm{a}}=0.980 \mathrm{~L}
\end{aligned}
$$

Hence, $V_{b}=0.020 \mathrm{~L}$.

- Boric acid, $\mathrm{B}(\mathrm{OH})_{3}$, is a weak acid $\left(\mathrm{p} K_{\mathrm{a}}=9.24\right)$ that is used as a mild antiseptic and eye wash. Unusually, the Lewis acidity of the compound accounts for its Brønsted acidity. By using an appropriate chemical equation, show how this compound acts as a Brønsted acid in aqueous solution.

The boron atom in $\mathrm{B}(\mathrm{OH})_{3}$ is electron deficient. It acts as a Lewis acid by readily accepting the lone pair from the oxygen in a water molecule to go from $s p^{2}$ to $s p^{3}$ hybridisation.

Solution A consists of a 0.050 M aqueous solution of boric acid at $25^{\circ} \mathrm{C}$. Calculate the pH of Solution A.

As boric is a weak acid, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$must be calculated using a reaction table $\left(\operatorname{acid}=\mathbf{B}(\mathrm{OH})_{3}\right.$ and base $\left.=\mathbf{B}(\mathrm{OH})_{2}^{-}\right)$

	acid	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathrm{H}_{3} \mathrm{O}^{+}$	base
initial	0.050	large		0	0
change	$-x$	negligible		$+x$	$+x$
final	$0.050-x$	large		x	x

The equilibrium constant K_{a} is given by: $K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\text {base }]}{[\text { acid }]}=\frac{x^{2}}{0.050-x}$
As $\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}, K_{\mathrm{a}}=10^{-9.24}$ and is very small, $0.050-x \sim 0.050$ and hence:

$$
x^{2}=0.050 \times 10^{-9.24} \quad \text { or } \quad x=5.36 \times 10^{-6} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Hence, the $\mathbf{p H}$ is given by:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log _{10}\left(5.36 \times 10^{-6}\right)=5.27
$$

$$
\mathrm{pH}=5.27
$$

At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 10.18 g of $\mathrm{NaB}(\mathrm{OH})_{4}$ dissolved in water. Calculate the pH of Solution B.

The molar mass of $\mathrm{NaB}(\mathrm{OH})_{3}$ is:

$$
\begin{aligned}
\text { molar mass } & =[22.99(\mathrm{Na})+10.81(\mathrm{~B})+4(16.00(\mathrm{O})+1.008(\mathrm{H}))] \mathrm{g} \mathrm{~mol}^{-1} \\
& =101.83 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

ANSWER CONTINUES ON THE NEXT PAGE

A mass of 10.18 g therefore corresponds to:

$$
\text { number of moles }=\text { mass } / \text { molar mass }=10.18 \mathrm{~g} /\left(101.83 \mathrm{~g} \mathrm{~mol}^{-1}\right)=0.100 \mathrm{~mol}
$$

A 1.00 L solution contains this amount has a concentration of 0.100 M .
As it is a weak base, $\left[\mathrm{OH}^{-}\right]$must be calculated by considering the equilibrium:

	base	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	acid	OH^{-}
initial	0.100	large		0	0
change	$-y$	negligible		$+y$	$+y$
final	$0.10-y$	large		y	y

The equilibrium constant K_{b} is given by:

$$
K_{\mathrm{b}}=\frac{[\mathrm{acid}]\left[\mathrm{OH}^{-}\right]}{[\text {base }]}=\frac{y^{2}}{(0.100-y)}
$$

For an acid and its conjugate base:

$$
\begin{aligned}
& \mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\
& \mathrm{p} K_{\mathrm{b}}=14.00-9.24=4.76
\end{aligned}
$$

As $p K_{b}=4.76, K_{b}=10^{-4.76} . K_{\mathrm{b}}$ is very small so $0.100-y \sim 0.100$ and hence:

$$
y^{2}=0.100 \times 10^{-4.76} \text { or } y=0.00132 \mathrm{M}=\left[\mathrm{OH}^{-}\right]
$$

Hence, the pOH is given by:

$$
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=\log _{10}[0.00132]=2.88
$$

Finally, $\mathbf{p H}+\mathbf{p O H}=14.00$ so

$$
\mathrm{pH}=14.00-2.88=11.12
$$

$$
\mathrm{pH}=\mathbf{1 1 . 1 2}
$$

Using both Solutions A and B, calculate the volumes (mL) required to prepare a 1.0 L solution with a $\mathrm{pH}=8.50$.

The ratio of acid to conjugate base needed can be calculated using the Henderson-Hasselbalch equation, $\mathbf{p H}=\mathbf{p} K_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}$:

$$
8.50=9.24+\log \frac{[\text { base }]}{[\text { acid }]} \text { so } \frac{[\text { base }]}{[\text { acid }]}=10^{-0.74}=0.182
$$

A volume V_{a} of the acid and V_{b} of base are added together to give a solution with a total volume of 1.0 L so:

$$
V_{\mathrm{a}}+V_{\mathrm{b}}=1.0 \mathrm{~L}
$$

Using $c_{1} V_{1}=c_{2} V_{2}$, this mixing reduces the concentration of both:
acid: $\quad(0.050 \mathrm{M}) \times V_{\mathrm{a}}=c_{\text {acid }} \times(1.0 \mathrm{~L}) \quad$ so $V_{\mathrm{a}}=20 . \times c_{\text {acid }}$
base: $(0.100 \mathrm{M}) \times V_{b}=c_{\text {base }} \times(1.0 \mathrm{~L}) \quad$ so $V_{b}=10.0 \times c_{\text {base }}$

Using the concentration ratio from the Henderson-Hasselbalch equation above, the ratio of the volumes needed is therefore:

$$
V_{\mathrm{b}} / V_{\mathrm{a}}=(10.0 / 20 .) \times c_{\text {base }} / c_{\text {acid }}=(10 . / 20 .) \times 0.182=0.0910
$$

or

$$
V_{b}=0.0910 \times V_{a}
$$

From above, $V_{a}+V_{b}=1.0 \mathrm{~L}$ so:

$$
V_{\mathrm{a}}+\left(0.0910 \times V_{\mathrm{a}}\right)=1.0 \mathrm{~L}
$$

$$
1.0091 V_{\mathrm{a}}=1.0 \mathrm{~L}
$$

$$
V_{\mathrm{a}}=0.917 \mathrm{~L}
$$

Hence, $V_{b}=0.083 L$.

- Aqua ligands in coordination complexes are generally acidic. Briefly explain this phenomenon using $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]^{3+}$ as an example.
Co^{3+} has a high charge and is relatively small: it has a high charge density. When attached to water, it polarises the $\mathbf{O}-\mathbf{H}$ bond in the aqua ligand.

This weakens the $\mathbf{O}-\mathbf{H}$ bond causing the complex to be acidic in aqueous solution.

Solution A consists of a 0.10 M aqueous solution of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ at $25^{\circ} \mathrm{C}$. Calculate the pH of Solution A. The $\mathrm{p} K_{\mathrm{a}}$ of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]^{3+}=5.69$.

As $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]^{3+}$ is a weak acid, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$must be calculated using a reaction table $\left(\operatorname{acid}=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]^{3+}\right.$ and base $=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{OH})\right]^{2+}$

	acid	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathrm{H}_{3} \mathbf{O}^{+}$	base
initial	0.10	large		0	0
change	$-x$	negligible		$+x$	$+x$
final	$0.10-x$	large		x	x

The equilibrium constant K_{a} is given by:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\text {base }]}{[\text { acid }]}=\frac{x^{2}}{0.10-x}
$$

As $\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}, K_{\mathrm{a}}=10^{-5.69}$ and is very small, $0.10-\mathrm{x} \sim 0.10$ and hence:

$$
x^{2}=0.10 \times 10^{-5.69} \quad \text { or } \quad x=4.5 \times 10^{-4} M=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Hence, the $\mathbf{p H}$ is given by:

$$
\mathbf{p H}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log _{10}\left(4.5 \times 10^{-4}\right)=3.35
$$

$$
\mathrm{pH}=3.35
$$

At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 28.5 g of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)_{2}$ dissolved in water. Calculate the pH of Solution B.

The molar mass of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)_{2}$ is:
$\begin{aligned} \text { molar mass }= & \left(\begin{array}{rl}58.93(\mathrm{Co})+7 \times 14.01(\mathrm{~N})+7 \times 16.00(\mathrm{O})+16 \times 1.008(\mathrm{H})) \mathrm{g} \mathrm{mol}^{-1} \\ =285.128 \mathrm{~g} \mathrm{~mol}^{-1}\end{array}\right]\end{aligned}$

$$
=285.128 \mathrm{~g} \mathrm{~mol}^{-1}
$$

The number of moles present in 28.5 g is therefore:
number of moles $=$ mass $/$ molar mass $=(28.5 \mathrm{~g}) /\left(285.128 \mathrm{~g} \mathrm{~mol}^{-1}\right)=0.100 \mathrm{~mol}$

If this is present in 1.00 L , then [base] $=\mathbf{0 . 1 0 0} \mathrm{M}$.
As it is a weak base, $\left[\mathrm{OH}^{-}\right]$must be calculated by considering the equilibrium:

	base	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	acid	OH^{-}
initial	0.100	large		0	0
change	$-y$	negligible		$+y$	$+y$
final	$0.100-y$	large		y	y

The equilibrium constant K_{b} is given by:

$$
K_{\mathrm{b}}=\frac{[\mathrm{acid}]\left[\mathrm{OH}^{-}\right]}{[\text {base }]}=\frac{y^{2}}{(0.100-y)}
$$

For an acid and its conjugate base:

$$
\begin{aligned}
& \mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\
& \mathrm{p} K_{\mathrm{b}}=14.00-5.69=8.31
\end{aligned}
$$

As $\mathrm{p} K_{\mathrm{b}}=8.31, K_{\mathrm{b}}=10^{-8.31} . K_{\mathrm{b}}$ is very small so $0.100-y \sim 0.100$ and hence:

$$
y^{2}=0.100 \times 10^{-8.31} \text { or } y=2.21 \times 10^{-5} \mathrm{M}=\left[\mathrm{OH}^{-}\right]
$$

Hence, the pOH is given by:

$$
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=\log _{10}\left[2.21 \times 10^{-5}\right]=4.65
$$

Finally, $\mathbf{p H}+\mathbf{p O H}=14.00$ so

$$
\mathrm{pH}=14.00-4.65=9.35
$$

$$
\mathrm{pH}=\mathbf{9 . 3 5}
$$

Using both Solutions A and B, calculate the volumes (in mL) required to prepare a 1.0 L solution with a $\mathrm{pH}=7.00$.

The ratio of acid to conjugate base needed can be calculated using the Henderson-Hasselbalch equation, $\mathbf{p H}=\mathbf{p} K_{\mathrm{a}}+\log _{[\text {base }]}^{[\text {acid }]}$:

$$
7.00=5.69+\log \frac{[\text { base }]}{[\text { acid }]} \text { so } \frac{[\text { base }]}{[\text { acid }]}=10^{1.31}=20.4
$$

As the base and acid have the same concentration, this is also the ratio of the volumes needed. As $V_{\text {acid }}+V_{\text {base }}=1.0 \mathrm{~L}$ and $V_{\text {base }} / V_{\text {acid }}=20.4$:

$$
V_{\text {acid }}=0.047 \mathrm{~L} \text { and } \mathrm{V}_{\text {base }}=0.953 \mathrm{~L}
$$

- A dilute solution of ammonia has a pH of 10.54 . Calculate what amount of $\mathrm{HCl}(\mathrm{g})$ must be added to 1.0 L of this solution to give a final pH of 8.46.
The $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{NH}_{4}{ }^{+}$is 9.24 .

In the initial solution, $\mathbf{p H}=10.54$ so $\mathbf{p O H}=14.00-10.54=3.46$ and:

$$
\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=10^{-3.46}=0.000347 \mathrm{M}
$$

This is formed by the reaction below.

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Hence, $\left[\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})\right]=\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=0.000347 \mathrm{M}$. This reaction corresponds to K_{b} for NH_{3}. As K_{a} for $\mathrm{NH}_{4}{ }^{+}=9.24, K_{\mathrm{b}}=14.00-9.24=4.76$ and

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]}{\left[\mathrm{NH}_{3}(\mathrm{aq})\right]}=\frac{\left(10^{-3.46}\right)\left(10^{-3.46}\right)}{\left[\mathrm{NH}_{3}(\mathrm{aq})\right]}=10^{-4.76}
$$

Hence, $\left[\mathrm{NH}_{3}(\mathrm{aq})\right]=10^{-2.16}=0.00692 \mathrm{M}$
This reacts with the added $\mathrm{HCl}(\mathrm{g})$:

	$\mathbf{H}^{+}(\mathbf{a q})$	$\mathrm{NH}_{\mathbf{3}}(\mathrm{aq})$	\rightleftharpoons	$\left.\mathrm{NH}_{4}{ }^{+} \mathbf{(a q}\right)$
initial	\boldsymbol{x}	$\mathbf{0 . 0 0 6 9 2}$		$\mathbf{0 . 0 0 3 3 4 7}$
final	$\mathbf{0}$	$\mathbf{0 . 0 0 6 9 2 - x}$		$\mathbf{0 . 0 0 0 3 4 7}+\boldsymbol{x}$

At the final pH of 8.46, the Henderson-Hasselbalch equation can be used:

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{NH}_{3}(\mathrm{aq})\right]}{\left[\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})\right.} \\
& 8.46=9.24+\log \left(\frac{0.00692-x}{0.000347+\mathrm{x}}\right)
\end{aligned}
$$

Solving this gives $\boldsymbol{x}=\mathbf{0 . 0 0 5 9} \mathbf{~ m o l}$.

- A 300.0 mL solution of HCl has a pH of 1.22 . Given that the $\mathrm{p} K_{\mathrm{a}}$ of iodic acid, HIO_{3}, is 0.79 , how many moles of sodium iodate, NaIO_{3}, would need to be added to this solution to raise its pH to 2.00 ?

Using $\mathbf{p H}=-\log _{10}\left[\mathbf{H}^{+}(\mathbf{a q})\right]$,

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {initial }}=10^{-1.22}=0.060 \mathrm{M}} \\
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {final }}=10^{-2.00}=\mathbf{0 . 0 1 0} \mathrm{M}}
\end{aligned}
$$

Using $\mathbf{p H}=-\log _{10}\left[\mathbf{H}^{+}(\mathbf{a q})\right]$,

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {initial }}=10^{-1.22}=0.060 \mathrm{M}} \\
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {final }}=10^{-2.00}=\mathbf{0 . 0 1 0} \mathrm{M}}
\end{aligned}
$$

The change of $(0.060-0.010 \mathrm{M})=0.050 \mathrm{M}$ occurs due to the reaction with $\mathrm{IO}_{3}{ }^{-}$ (aq) to produce $\mathrm{HIO}_{3}(\mathrm{aq})$. If $\left[\mathrm{IO}_{3}{ }^{-}(\mathrm{aq})\right]=x$, the reaction table is:

	$\mathbf{H}^{+}(\mathrm{aq})+$	$\mathrm{IO}_{3}{ }^{-}(\mathrm{aq})$	\rightleftharpoons	$\mathrm{HIO}_{3}(\mathrm{aq})$
initial	$\mathbf{0 . 0 6 0}$	\boldsymbol{x}		$\mathbf{0}$
change	$\mathbf{- 0 . 0 5 0}$	$-\mathbf{0 . 0 5 0}$		$+\mathbf{0 . 0 5 0}$
final	$\mathbf{0 . 0 1 0}$	$\boldsymbol{x}-\mathbf{0 . 0 5 0}$		$\mathbf{0 . 0 5 0}$

As $\mathrm{p} K_{\mathrm{a}}=0.79=-\log _{10} K_{\mathrm{a}}:$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{IO}_{3}^{-}(\mathrm{aq})\right]}{\left[\mathrm{HIO}_{3}(\mathrm{aq})\right]}=\frac{(0.010) \times(x-0.050)}{0.050}=10^{-0.79}
$$

Thus, $x=0.86 \mathrm{M}=\left[\mathrm{IO}_{3}{ }^{-}(\mathrm{aq})\right]_{\text {initial. }}$. This concentration corresponds to a 300.0 mL solution so the number of moles that have been added is:

$$
\begin{aligned}
\text { number of moles } & =\text { concentration } \times \text { volume } \\
& =(0.86 \mathrm{M}) \times(0.3000 \mathrm{~L})=0.26 \mathrm{~mol}
\end{aligned}
$$

- The primary buffering system in blood plasma is represented by the following equation:

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \quad \mathrm{p} K_{\mathrm{a}}=6.1
$$

What is the ratio $\mathrm{HCO}_{3}{ }^{-}: \mathrm{H}_{2} \mathrm{CO}_{3}$ at the normal plasma pH of 7.4 ?

The Henderson-Hasselbalch equation with $[$ acid $]=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ and $[$ base $]=$ $\left[\mathrm{HCO}_{3}{ }^{-}\right]$can be used for this buffer system,

$$
\begin{aligned}
& \mathbf{p H}=\mathrm{pK}_{\mathrm{a}}+\log _{10}\left(\frac{[\text { base }]}{\text { [acid }]}\right) \\
& \quad=6.1+\log _{10}\left(\frac{[\text { base }]}{\text { [acid }]}\right)=7.4 \\
& {[\text { [base }]} \\
& \text { [acid }]
\end{aligned} \mathbf{1 0}^{(7.4-6.1)}=10^{1.3}=\mathbf{2 0} 0
$$

A typical person has 2 L of blood plasma. If such a person were to drink 1 L of soft drink with a pH of 2.5 , what would the plasma pH be if it were not buffered? (Assume all of the H^{+}from the soft drink is absorbed by the plasma, but the volume of plasma does not increase.)

As $\mathbf{p H}=-\log _{10}\left[\mathrm{H}^{+}\right]$, the $\left[\mathrm{H}^{+}\right]$in the soft drink is,

$$
\left[\mathrm{H}^{+}\right]_{\text {soft drink }}=10^{-2.5} \mathbf{M}
$$

1 L of soft drink therefore contains

$$
\text { number of moles }=\text { concentration } \times \text { volume }=\left(10^{-2.5} \mathrm{~mol} \mathrm{~L}^{-1} \times 1 \mathrm{~L}\right)=10^{-2.5} \mathrm{~mol}
$$

If this amount is present in 2 L of plasma,

$$
\left[\mathrm{H}^{+}\right]_{\text {plasma }}=\frac{\text { number of moles }}{\text { volume }}=\frac{10^{-2.5}}{2} \mathbf{M}
$$

Hence the pH of the unbuffered plasma is

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10}\left(\frac{10^{-2.5}}{2}\right)=2.8
$$

What is the pH in this typical person with a normal $\mathrm{HCO}_{3}{ }^{-}$concentration of 0.020 M ? Ignore any other contributions to the buffering.

Before the addition of the soft drink, $\left[\mathrm{HCO}_{3}{ }^{-}\right]=\mathbf{0 . 0 2 0} \mathrm{M}$ and, at $\mathrm{pH} 7.4,\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=$ $\left[\mathrm{HCO}_{3}{ }^{-}\right] / 20=0.0010 \mathrm{M}$.

As the soft drink has $10^{-2.5} \mathrm{~mol}$ of H^{+}, its concentration when added to the plasma will again be $\left[\mathrm{H}^{+}\right]=\frac{10^{-2.5}}{2} \mathrm{M}$ before buffering. Adding it will decrease the base concentration and increase the acid concentration so that,

$$
\begin{aligned}
& {\left[\mathrm{HCO}_{3}^{-}\right]=\left(0.020-\frac{10^{-2.5}}{2}\right) \mathrm{M}=0.018 \mathrm{M}} \\
& {\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\left(0.0010+\frac{10^{-2.5}}{2}\right) \mathrm{M}=0.0026 \mathrm{M}}
\end{aligned}
$$

Hence,

$$
\mathrm{pH}=(6.1)+\log _{10}\left(\frac{0.018}{0.0026}\right)=7.0
$$

Answer: 7.0

- Calculate the pH of a solution that is prepared by mixing 750 mL of 1.0 M potassium dihydrogenphosphate with 250 mL of 1.0 M potassium hydrogenphosphate.
For $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{p} K_{\mathrm{a} 1}=2.15, \mathrm{p} K_{\mathrm{a} 2}=7.20, \mathrm{p} K_{\mathrm{a} 3}=12.38$

The hydrogenphosphate anion is the conjugate base of dihydrogenphosphate, corresponding to the second ionization of phosphoric acid $\left(\mathrm{K}_{\mathrm{a} 2}\right) . \mathrm{K}_{\mathrm{a} 1}$ is much larger than $\mathrm{K}_{\mathrm{a} 2}$ so the equilibrium will not be greatly affected by protonation of dihydrogenphosphate. $K_{a 3}$ is much smaller than $K_{a 2}$ so the equilibrium will also not be greatly affected by deprotonation of hydrogenphosphate. The solution is a buffer and the pH can be calculated using the Henderson-Hasselbalch equation:

$$
\mathbf{p H}=\mathbf{p K}_{\mathrm{a}}+\log _{10}\left(\frac{[\text { base }]}{\text { [acid }]}\right)=\mathbf{p K}_{\mathrm{a} 2}+\log _{10}\left(\frac{\text { [hydrogenphosphate }]}{\text { [dihydrogenphosphate }]}\right)
$$

After mixing, a 1.00 L solution is formed that contains 0.750 mol of dihydrogenphosphate and 0.250 mol of hydrogenphosphate. Thus:

$$
\mathrm{pH}=7.20+\log _{10}\left(\frac{0.250}{0.750}\right)=6.72
$$

- Solution A consists of a 0.15 M aqueous solution of nitrous acid $\left(\mathrm{HNO}_{2}\right)$ at $25^{\circ} \mathrm{C}$. Calculate the pH of Solution A. The $\mathrm{p} K_{\mathrm{a}}$ of HNO_{2} is 3.15 .

Nitrous acid is a weak acid so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$must again be calculated:

	$\mathrm{HNO}_{\mathbf{2}}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}(\mathbf{l})$	\rightleftharpoons	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$	$\mathrm{NO}_{2}{ }^{-}(\mathrm{aq})$
initial	0.15	large		0	0
change	$-x$	negligible		$+x$	$+x$
final	$0.15-x$	large		x	x

The equilibrium constant K_{a} is given by:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=\frac{x^{2}}{0.15-x}
$$

As $K_{\mathrm{a}}=10^{-3.15}$ is very small, $0.15-\boldsymbol{x} \sim 0.15$ and hence:

$$
x^{2}=0.15 \times 10^{-3.15} \quad \text { or } \quad x=0.0103 \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]
$$

Hence, the $\mathbf{p H}$ is given by:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]=-\log _{10}[0.0103]=1.99
$$

ANSWER: $\mathbf{p H}=\mathbf{1 . 9 9}$

At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 13.8 g of sodium nitrite $\left(\mathrm{NaNO}_{2}\right)$ dissolved in water. Calculate the pH of Solution B.

The formula mass of NaNO_{2} is $(22.99(\mathrm{Na})+14.01(\mathrm{~N})+2 \times 16.00(\mathrm{O})) \mathrm{g} \mathrm{mol}^{-1}$ $=69 \mathrm{~g} \mathrm{~mol}^{1} .13 .8 \mathrm{~g}$ therefore corresponds to:

$$
\text { amount of } \mathrm{NaNO}_{2}=\frac{\text { mass }}{\text { formula mass }}=\frac{13.8 \mathrm{~g}}{69.0 \mathrm{~g} \mathrm{~mol}^{-1}}=0.200 \mathrm{~mol}
$$

A 1.00 L solution containing this amount has a molarity of 0.200 M . The nitrite ion acts as a base and $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ must be calculated from the equilibrium:

	$\mathrm{NO}_{2}{ }^{-}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}(\mathbf{l})$	\rightleftharpoons	$\mathrm{OH}^{-}(\mathrm{aq})$	$\mathrm{HNO}_{2}(\mathrm{aq})$
initial	0.200	large		0	0
change	$-y$	negligible		$+y$	$+y$
final	$0.200-y$	large		y	y

The equilibrium constant K_{b} is given by:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{HNO}_{2}\right]}{\left[\mathrm{NO}_{2}^{-}\right]}=\frac{y^{2}}{0.200-y}
$$

In aqueous solution, $\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$. Hence $\mathrm{p} K_{\mathrm{b}}=(14.00-3.15)=10.85$ and as $K_{\mathrm{b}}=10^{-10.85}$ is very small, $0.200-y \sim 0.200$ and hence:

$$
y^{2}=0.200 \times 10^{-10.85} \quad \text { or } \quad y=1.68 \times 10^{-6} \mathrm{M}=\left[\mathrm{OH}^{-}(\mathrm{aq})\right]
$$

Hence, the pOH is given by:

$$
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=-\log _{10}\left[1.68 \times 10^{-6}\right]=5.77
$$

As $\mathrm{pH}+\mathbf{p O H}=14, \mathbf{p H}=8.23$

Solution B $(1.00 \mathrm{~L})$ is poured into Solution $\mathrm{A}(1.00 \mathrm{~L})$ and allowed to equilibrate at $25^{\circ} \mathrm{C}$. Calculate the pH of the final solution.

This solution contains an acid and its conjugate base so the HendersonHasselbalch equation can be used. As $[$ acid $]=\left[\mathrm{HNO}_{2}\right]=0.15 \mathrm{M}$ and $[$ base $]=$ $\left[\mathrm{NO}_{2}{ }^{-}\right]=\mathbf{0 . 2 0 0} \mathrm{M}$:

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10}\left(\frac{[\text { base }]}{[\text { acid }]}\right)=3.15+\log _{10}\left(\frac{0.200}{0.15}\right)=3.27
$$

ANSWER: $\mathbf{p H}=\mathbf{3 . 2 7}$

If you wanted to adjust the pH of the mixture of Solution A and Solution B to be exactly equal to 3.00 , which component

The acid, $\mathbf{H N O}_{2}$

