- Boric acid, $\mathrm{B}(\mathrm{OH})_{3}$, is a weak acid $\left(\mathrm{p} K_{\mathrm{a}}=9.24\right)$ that is used as a mild antiseptic and eye wash. Unusually, the Lewis acidity of the compound accounts for its Brønsted acidity. By using an appropriate chemical equation, show how this compound acts as a Brønsted acid in aqueous solution.

Solution A consists of a 0.60 M aqueous solution of boric acid at $25^{\circ} \mathrm{C}$. Calculate the pH of Solution A.

At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 112 g of $\mathrm{NaB}(\mathrm{OH})_{4}$ dissolved in water. Calculate the pH of Solution B.

Using both Solutions A and B, calculate the volumes (mL) required to prepare a 1.0 L solution with a $\mathrm{pH}=9.24$.

Answer:

- Boric acid, $\mathrm{B}(\mathrm{OH})_{3}$, is a weak acid $\left(\mathrm{p} K_{\mathrm{a}}=9.24\right)$ that is used as a mild antiseptic and eye wash. Unusually, the Lewis acidity of the compound accounts for its Brønsted acidity. By using an appropriate chemical equation, show how this compound acts as a Brønsted acid in aqueous solution.

Solution A consists of a 0.40 M aqueous solution of boric acid at $25^{\circ} \mathrm{C}$. Calculate the pH of Solution A.

At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 101.8 g of $\mathrm{NaB}(\mathrm{OH})_{4}$ dissolved in water. Calculate the pH of Solution B.

Using both Solutions A and B, calculate the volumes (mL) required to prepare a 1.0 L solution with a $\mathrm{pH}=8.00$.

- Boric acid, $\mathrm{B}(\mathrm{OH})_{3}$, is a weak acid $\left(\mathrm{p} K_{\mathrm{a}}=9.24\right)$ that is used as a mild antiseptic and eye wash. Unusually, the Lewis acidity of the compound accounts for its Brønsted acidity. By using an appropriate chemical equation, show how this compound acts as a Brønsted acid in aqueous solution.

Solution A consists of a 0.050 M aqueous solution of boric acid at $25^{\circ} \mathrm{C}$. Calculate the pH of Solution A.

At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 10.18 g of $\mathrm{NaB}(\mathrm{OH})_{4}$ dissolved in water. Calculate the pH of Solution B.

Using both Solutions A and B, calculate the volumes (mL) required to prepare a 1.0 L solution with a $\mathrm{pH}=8.50$.

- Aqua ligands in coordination complexes are generally acidic. Briefly explain this phenomenon using $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]^{3+}$ as an example.
\square
Solution A consists of a 0.10 M aqueous solution of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ at $25^{\circ} \mathrm{C}$. Calculate the pH of Solution A. The $\mathrm{p} K_{\mathrm{a}}$ of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]^{3+}=5.69$.

$$
\mathrm{pH}=
$$

At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 28.5 g of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{OH})\right]\left(\mathrm{NO}_{3}\right)_{2}$ dissolved in water. Calculate the pH of Solution B.

Using both Solutions A and B, calculate the volumes (in mL) required to prepare a 1.0 L solution with a $\mathrm{pH}=7.00$.

- A dilute solution of ammonia has a pH of 10.54 . Calculate what amount of $\mathrm{HCl}(\mathrm{g})$ must be added to 1.0 L of this solution to give a final pH of 8.46. The $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{NH}_{4}{ }^{+}$is 9.24 .
- A 300.0 mL solution of HCl has a pH of 1.22 . Given that the $\mathrm{p} K_{\mathrm{a}}$ of iodic acid, HIO_{3}, is 0.79 , how many moles of sodium iodate, NaIO_{3}, would need to be added to this solution to raise its pH to 2.00 ?
- The primary buffering system in blood plasma is represented by the following equation:

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \quad \mathrm{p} K_{\mathrm{a}}=6.1
$$

What is the ratio $\mathrm{HCO}_{3}^{-}: \mathrm{H}_{2} \mathrm{CO}_{3}$ at the normal plasma pH of 7.4 ?

Answer:
A typical person has 2 L of blood plasma. If such a person were to drink 1 L of soft drink with a pH of 2.5 , what would the plasma pH be if it were not buffered? (Assume all of the H^{+}from the soft drink is absorbed by the plasma, but the volume of plasma does not increase.)

Answer:

What is the pH in this typical person with a normal $\mathrm{HCO}_{3}{ }^{-}$concentration of 0.020 M ? Ignore any other contributions to the buffering.

- Calculate the pH of a solution that is prepared by mixing 750 mL of 1.0 M potassium dihydrogenphosphate with 250 mL of 1.0 M potassium hydrogenphosphate.
For $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{p} K_{\mathrm{a} 1}=2.15, \mathrm{p} K_{\mathrm{a} 2}=7.20, \mathrm{p} K_{\mathrm{a} 3}=12.38$
- Solution A consists of a 0.15 M aqueous solution of nitrous acid $\left(\mathrm{HNO}_{2}\right)$ at $25^{\circ} \mathrm{C}$. Calculate the pH of Solution A. The $\mathrm{p} K_{\mathrm{a}}$ of HNO_{2} is 3.15 .

ANSWER:

At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 13.8 g of sodium nitrite $\left(\mathrm{NaNO}_{2}\right)$ dissolved in water. Calculate the pH of Solution B.

Solution B $(1.00 \mathrm{~L})$ is poured into Solution A $(1.00 \mathrm{~L})$ and allowed to equilibrate at $25^{\circ} \mathrm{C}$. Calculate the pH of the final solution.

