- At a certain temperature the following data were collected for the decomposition of HI.

$$
2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}
$$

Experiment	Initial [HI] $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Initial rate of reaction $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$
1	1.0×10^{-2}	4.0×10^{-6}
2	2.0×10^{-2}	1.6×10^{-5}
3	3.0×10^{-2}	3.6×10^{-5}

Determine the rate law for the reaction.

Between experiment (1) and (2), the concentration of HI is doubled. This leads to the rate increasing by a factor of 4 .

Between experiment (1) and (3), the concentration of HI is trebled. This leads the to rate increasing by a factor 9 .

The rate is proportional to $[\mathrm{HI}]^{2}$:

$$
\text { rate }=k[\mathrm{HII}]^{2}
$$

What is the value of the rate constant for the decomposition of HI?

Using experiment (1), $[\mathrm{HI}]=1.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ and rate $=4.0 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$:

$$
\begin{aligned}
& \text { rate }=k[\mathrm{HI}]^{2} \\
& 4.0 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}=(k) \times\left(1.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2} \\
& k=\left(4.0 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\right) /\left(1.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}=4.0 \times 10^{-2} \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}
\end{aligned}
$$

- Four experiments were conducted to discover how the initial rate of consumption of $\mathrm{BrO}_{3}{ }^{-}$ions in the reaction below varied as the concentrations of the reactants were changed.

$$
\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

Experiment	Initial concentration (mol L			
	$\left.\mathrm{BrO}_{3}{ }^{-1}\right)$	Initial rate		
Br^{-}	H^{+}	$\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$		
1	0.10	0.10	0.10	1.2×10^{-3}
2	0.20	0.10	0.10	2.4×10^{-3}
3	0.10	0.30	0.10	3.5×10^{-3}
4	0.20	0.10	0.15	5.4×10^{-3}

Use the experimental data in the table above to determine the order of the reaction with respect to each reactant.

Between experiments (1) and (3), $\left[\mathrm{Br}^{-}\right]$and $\left[\mathrm{H}^{+}\right]$are kept constant but $\left[\mathrm{BrO}_{3}{ }^{-}\right]$is doubled. This doubles the rate: the rate is proportional to $\left[\mathrm{BrO}_{3}\right]^{1}$ and so is first order with respect to $\mathrm{BrO}_{3}{ }^{-}$.

Between experiments (2) and (4), $\left[\mathrm{BrO}_{3}{ }^{-}\right]$and $\left[\mathrm{Br}^{-}\right]$are kept constant but $\left[\mathrm{H}^{+}\right]$is increased by a factor of $(\mathbf{0 . 1 5 / 0 . 1 0})=1.5$. This increases the rate by a factor of $\left(5.4 \times 10^{-3} / 2.4 \times 10^{-3}\right)=2.25$: the rate is proportional to $\left[\mathrm{H}^{+}\right]^{2}$ as $(1.5)^{2}=\mathbf{2 . 2 5}$ and so is second order with respect to H^{+}.

Between experiments (1) and (2), $\left[\mathrm{BrO}_{3}{ }^{-}\right]$and $\left[\mathrm{H}^{+}\right]$are kept constant but $\left[\mathrm{Br}^{-}\right]$is increased by a factor of 3 . This increases the rate by a factor of $\left(\mathbf{3 . 5} \times 10^{-3} / 1.2 \times\right.$ $\left.10^{-3}\right)=$ 2.9: the rate is proportional to $\left[\mathrm{Br}^{-1}\right]^{1}$ and so is first order with respect to Br^{-}.

Overall,

$$
\text { rate }=k\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}
$$

What is the rate of formation of Br_{2} when $\left[\mathrm{BrO}_{3}^{-}\right]=\left[\mathrm{Br}^{-}\right]=\left[\mathrm{H}^{+}\right]=0.10 \mathrm{M}$?

From the table, when $\left[\mathrm{BrO}_{3}{ }^{-}\right]=\left[\mathrm{Br}^{-}\right]=\left[\mathrm{H}^{+}\right]=0.10 \mathrm{M}$, the rate of consumption of $\mathrm{BrO}_{3}{ }^{-}$is $1.2 \times 10^{-3} \mathrm{M} \mathrm{s}^{-1}$. From the chemical equation, Br_{2} is produced at three times this rate.

The rate of production of Br_{2} is $3.6 \times 10^{-3} \mathrm{M} \mathrm{s}^{\mathbf{- 1}}$.

Write the rate law for the reaction and determine the value of the rate constant, k.
From above, rate $=k\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$. Using experiment (1):
ANSWER CONTINUES ON THE NEXT PAGE

$$
\begin{aligned}
\text { rate } & =k\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2} \\
& =k(0.10 \mathrm{M})(0.10 \mathrm{M})(0.10 \mathrm{M})^{2}=k\left(0.00010 \mathrm{M}^{4}\right)=1.2 \times 10^{-3} \mathrm{M} \mathrm{~s}^{-1}
\end{aligned}
$$

So,

$$
k=\left(1.2 \times 10^{-3} \mathrm{M} \mathrm{~s}^{-1}\right) /\left(0.00010 \mathrm{M}^{3}\right)=12 \mathrm{M}^{-3} \mathrm{~s}^{-1}
$$

- Nitrogen monoxide, a noxious pollutant, reacts with oxygen to produce nitrogen dioxide, another toxic gas:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

The following rate data were collected at $225^{\circ} \mathrm{C}$.

Experiment	$[\mathrm{NO}]_{0}(\mathrm{M})$	$\left[\mathrm{O}_{2}\right]_{0}(\mathrm{M})$	Initial rate, $-\mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt},\left(\mathrm{M} \mathrm{s}^{-1}\right)$
1	1.3×10^{-2}	1.1×10^{-2}	1.6×10^{-3}
2	1.3×10^{-2}	2.2×10^{-2}	3.2×10^{-3}
3	2.6×10^{-2}	1.1×10^{-2}	6.4×10^{-3}

Determine the rate law for the reaction.
Between experiments 1 and 2, [NO] is held constant and $\left[\mathrm{O}_{2}\right]$ doubles. This leads to a doubling of the rate: the reaction is $1^{\text {st }}$ order with respect to $\mathrm{O}_{\mathbf{2}}$.
Between experiments 1 and 3, $\left[\mathrm{O}_{2}\right]$ is held constant and [NO] doubles. This leads to the rate increasing by a factor of 4 : the rate is $2^{\text {nd }}$ order with respect to NO.
The rate law is therefore:

$$
-\mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt}=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]
$$

Calculate the value of the rate constant at $225^{\circ} \mathrm{C}$.
In experiment $1,[\mathrm{NO}]=1.3 \times 10^{-2} \mathrm{M},\left[\mathrm{O}_{2}\right]=1.1 \times 10^{-2} \mathrm{M}$ and rate $=1.6 \times 10^{-3} \mathrm{M} \mathrm{s}^{-1}$. Substituting these values into the rate law gives:

$$
\left(1.6 \times 10^{-3} \mathrm{M} \mathrm{~s}^{-1}\right)=k \times\left(1.3 \times 10^{-2} \mathrm{M}\right)^{2} \times\left(1.1 \times 10^{-2} \mathrm{M}\right)
$$

Hence:

$$
k=860 \mathrm{M}^{-2} \mathrm{~s}^{-1}
$$

$$
\text { Answer: } \mathbf{8 6 0} \mathbf{M}^{-2} \mathbf{s}^{-1}
$$

Calculate the rate of appearance of NO_{2} when $[\mathrm{NO}]=\left[\mathrm{O}_{2}\right]=6.5 \times 10^{-3} \mathrm{M}$.
Substituting the values into the rate law gives:

$$
\begin{aligned}
-\mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt} & =k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right] \\
& =\left(860 \mathrm{M}^{-2} \mathrm{~s}^{-1}\right) \times\left(6.5 \times 10^{-3} \mathrm{M}\right)^{2} \times\left(6.5 \times 10^{-3} \mathrm{M}\right)=2.35 \times 10^{-4} \mathrm{M} \mathrm{~s}^{-1}
\end{aligned}
$$

From the chemical equation, the rate of appearance of NO_{2} is twice the rate of loss of O_{2} :

$$
\mathrm{d}\left[\mathrm{NO}_{2}\right] / \mathrm{dt}=2 \times-\mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt}=\left(2 \times 2.35 \times 10^{-4} \mathrm{M} \mathrm{~s}^{-1}\right)=4.7 \times 10^{-4} \mathrm{M} \mathrm{~s}^{-1}
$$

Answer: $\mathbf{4 . 7 \times 1 0 ^ { - 4 } \mathbf { M ~ s } ^ { - 1 } , ~}$

Suggest a possible mechanism for the reaction based on the form of the rate law.
Explain your answer.
A possible mechanism is:

Step 1:	$\mathrm{NO}+\mathrm{NO} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2}$	fast equilibrium
Step 2:	$\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$	slow (i.e. rate determining)

If the first step is at equilibrium with equilibrium constant K_{1} :

$$
K_{1}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]}{[\mathrm{NO}]^{2}} \Rightarrow \quad\left[\mathbf{N}_{2} \mathbf{O}_{2}\right]=K_{1}[\mathrm{NO}]^{2}
$$

The rate of step 2 is therefore

$$
\begin{aligned}
\text { rate } & =k_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{2}\right] \\
& =k_{2} K_{1}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]
\end{aligned}
$$

This is consistent with the experiment rate law with $k=k_{1} K$.

- 2-Bromo-2-methylpropane reacts with hydroxide ions to give 2-methyl-2-propanol.

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}
$$

The following rate data were collected at $55^{\circ} \mathrm{C}$.

Experiment	$\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]_{0}(\mathrm{M})$	$\left[\mathrm{OH}_{0}(\mathrm{M})\right.$	Initial rate $\left(\mathrm{d}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}\right] / \mathrm{dt}, \mathrm{M} \mathrm{s}^{-1}\right)$
1	0.050	0.10	5.0×10^{-4}
2	0.20	0.10	2.0×10^{-3}
3	0.20	0.30	2.0×10^{-3}

Determine the rate law for the reaction.

Between experiments (1) and (2), $\left[\mathrm{OH}^{-}\right]_{0}$ is constant. $\left.\left[\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]_{0}$ is increased by a factor of 4 and this leads to the rate increasing by a factor of 4: rate α $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$.

Between experiments (2) and (3), $\left.\left[\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]_{0}$ is constant. $\left[\mathrm{OH}^{-}\right]_{0}$ is increased by a factor of 3 and this leads to no change in the rate. The rate is independent of $\left[\mathrm{OH}^{-}\right]_{0}$.

Overall, rate $=k\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$.
Calculate the value of the rate constant at $55^{\circ} \mathrm{C}$.

From the rate law, $k=$ rate $/\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$.
For experiment 1, rate $=5 \times 10^{-4} \mathrm{M} \mathrm{s}^{-1}$ and $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]=0.050 \mathrm{M}$ and so

$$
k=\left(5 \times 10^{-4} \mathrm{M} \mathrm{~s}^{-1}\right) /(0.050 \mathrm{M})=1.0 \times 10^{-2} \mathrm{~s}^{-1}
$$

$$
\text { Answer: } k=1.0 \times 10^{-2} \mathrm{~s}^{-1}
$$

Suggest a possible mechanism for the reaction based on the form of the rate law.
Explain your answer.

The rate is independent of $\left[\mathrm{OH}^{-}\right]$suggesting that it is involved in a step after the rate determining step.

The rate is directly proportional to $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$ suggesting that a rate determining step which is unimolecular in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$.

A possible mechanism is:
(1) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br} \rightarrow\left(\mathrm{CH}_{3}\right)_{3}^{+}+\mathrm{Br}^{-} \quad$ slow
(2) $\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{OH}$ fast

The reaction is exothermic. Draw the potential energy vs reaction coordinate diagram for this mechanism, labelling all species that can be isolated.

From 2008-N-6, the mechanism involves two steps: a slow first step and a fast second step. As the first step is rate determining, it has a higher activation energy. As the reaction is exothermic overall, the products have lower enthalpy than the reactants.

Reaction coordinate

- Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water according to the following equation.

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The following rate data were collected at $225{ }^{\circ} \mathrm{C}$.

Experiment	$[\mathrm{NO}]_{0}(\mathrm{M})$	$\left[\mathrm{H}_{2}\right]_{0}(\mathrm{M})$	Initial rate $\left(\mathrm{d}[\mathrm{NO}] / \mathrm{dt}, \mathrm{M} \mathrm{s}^{-1}\right)$
1	6.4×10^{-3}	2.2×10^{-3}	2.6×10^{-5}
2	1.3×10^{-2}	2.2×10^{-3}	1.0×10^{-4}
3	6.4×10^{-3}	4.4×10^{-3}	5.1×10^{-5}

Determine the rate law for the reaction.

Between experiments (1) and (2), $\left[\mathrm{H}_{2}\right]_{0}$ is constant and $[\mathrm{NO}]_{0}$ doubles. As the rate increases by a factor of $\frac{1.0 \times 10^{-4}}{2.6 \times 10^{-5}}=3.8 \sim 4$, the rate is second order with respect to [NO] .

Between experiments (1) and (3), $\left[\mathrm{H}_{2}\right]_{0}$ doubles and $[\mathrm{NO}]_{0}$ is constant. As the rate increases by a factor of $\frac{5.1 \times 10^{-5}}{2.6 \times 10^{-5}}=2.0$, the rate is first order with respect to [NO$]_{0}$.

Overall,

$$
\text { rate }=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]
$$

Calculate the value of the rate constant at $225^{\circ} \mathrm{C}$.

Using experiment (1),

$$
\begin{aligned}
& 2.6 \times 10^{-5} \mathrm{M} \mathrm{~s}^{-1}=k \times\left(6.4 \times 10^{-3} \mathrm{M}\right)^{2} \times\left(2.2 \times 10^{-3} \mathrm{M}\right) \\
& k=2.9 \times 10^{2} \mathrm{M}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

Answer: $\boldsymbol{k}=\mathbf{2 . 9 \times 1 0 ^ { 2 }} \mathbf{M}^{-2} \mathbf{s}^{-1}$
Calculate the rate of appearance of $\mathrm{N}_{2} \mathrm{O}$ when $[\mathrm{NO}]=\left[\mathrm{H}_{2}\right]=6.6 \times 10^{-3} \mathrm{M}$.
rate of disappearance of $\mathrm{NO}=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$

$$
\begin{aligned}
& =\left(2.9 \times 10^{2} \mathrm{M}^{2} \mathrm{~s}^{-1}\right) \times\left(6.6 \times 10^{-3} \mathrm{M}\right)^{2} \times\left(6.6 \times 10^{-3} \mathrm{M}\right) \\
& =8.3 \times 10^{-5} \mathrm{M} \mathrm{~s}^{-1}
\end{aligned}
$$

The rate of appearance of $\mathrm{N}_{2} \mathrm{O}$ is half this value as, from the chemical equation, NO is disappearing at twice the rate than $\mathrm{N}_{2} \mathrm{O}$ is appearing.

Answer: $\mathbf{4 . 1} \times \mathbf{1 0}^{-5} \mathbf{M ~ s}^{-1}$

Suggest a possible mechanism for the reaction based on the form of the rate law.
Explain your answer.

Step 1: $\quad 2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{\mathbf{2}}(\mathrm{g})$
This is a fast equilibrium and so $K=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})\right]}{[\mathrm{NO}(\mathrm{g})]^{2}}$ or $\left[\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})\right]=K[\mathrm{NO}(\mathrm{g})]^{2}$
Step 2: $\quad \mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad$ slow (i.e. rate determining)
As this is rate determining,

$$
\text { rate }=k_{2}\left[\mathbf{N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{H}_{2}\right]
$$

As $\left[\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})\right]=K[\mathrm{NO}(\mathrm{g})]^{2}$, this can be rewritten as,

$$
\text { rate }=k K[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]
$$

This is consistent with the experimentally determined rate law with $\boldsymbol{k}_{\mathrm{exp}}=\boldsymbol{k}_{2} K$.

- The major pollutants $\mathrm{NO}(\mathrm{g}), \mathrm{CO}(\mathrm{g}), \mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are emitted by cars and can react according to the following equation.

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The following rate data were collected at $225{ }^{\circ} \mathrm{C}$.

Experiment	$\left[\mathrm{NO}_{2}\right]_{0}(\mathrm{M})$	$[\mathrm{CO}]_{0}(\mathrm{M})$	Initial rate $\left(\mathrm{d}\left[\mathrm{NO}_{2}\right] / \mathrm{dt}, \mathrm{M} \mathrm{s}^{-1}\right)$
1	0.263	0.826	1.44×10^{-5}
2	0.263	0.413	1.44×10^{-5}
3	0.526	0.413	5.76×10^{-5}

Determine the rate law for the reaction.

Between experiments (1) and (2), $\left[\mathrm{NO}_{2}\right]_{0}$ is constant and $[\mathrm{CO}]_{0}$ is halved. The rate does not change. The rate is independent of [CO]: zero order with respect to [CO].

Between experiments (2) and (3), $[\mathrm{CO}]_{0}$ is kept constant and $\left[\mathrm{NO}_{2}\right]_{0}$ is doubled. The rate increases by a factor of four: the rate is second order with respect to [NO_{2}].

Overall,

$$
\text { rate } \alpha\left[\mathrm{NO}_{2}\right]^{2}=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}
$$

Calculate the value of the rate constant at $2255^{\circ} \mathrm{C}$.

In experiment (1), rate $=1.44 \times 10^{-5} \mathrm{M} \mathrm{s}^{-1}$ when $\left[\mathrm{NO}_{2}\right]=0.263 \mathrm{M}$. Using the rate law:

$$
1.44 \times 10^{-5}=k \times(0.263)^{2} \quad \text { so } k=2.08 \times 10^{-4}
$$

The units of k can be deduced from the rate law:

$$
\begin{aligned}
& \text { rate }=k\left[\mathrm{NO}_{2}\right]^{2} \\
& \mathrm{M} \mathrm{~s}^{-1}=(\text { units of } k) \times(M)^{2} \quad \text { so } k \text { must have units of " } M^{-1} s^{-1} \text { ", }
\end{aligned}
$$

Calculate the rate of appearance of CO_{2} when $\left[\mathrm{NO}_{2}\right]=[\mathrm{CO}]=0.500 \mathrm{M}$.

When $\left[\mathrm{NO}_{2}\right]=0.500 \mathrm{M}$, rate $=\frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=\left(2.08 \times 10^{-4}\right) \times(0.500)^{2}=5.20 \times 10^{-5} \mathrm{M} \mathrm{s}^{-1}$

From the chemical equation, one mole of $\mathrm{CO}_{\mathbf{2}}$ is produced for every mole of $\mathbf{N O}_{\mathbf{2}}$ that is removed. Thus, rate of appearance of $\mathrm{CO}_{2}=$ rate of loss of $\mathbf{N O}_{2}$.

Answer: $\mathbf{5 . 2 0} \times \mathbf{1 0}^{-5} \mathbf{M ~ s}^{-1}$
Suggest a possible mechanism for the reaction based on the form of the rate law.
Explain your answer.

A possible mechanism is:

$$
\begin{aligned}
& \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{3}(\mathrm{~g}) \\
& \mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

The first step is slow and is rate determining. For this step, rate $\alpha\left[\mathrm{NO}_{2}\right]^{2}$, as observed. The second step is fast and does not contribute to the overall rate of the reaction and so the rate is independent of $[\mathrm{CO}(\mathrm{g})]$.

- 2-Propanol can be oxidised to acetone using $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ in acidic solution as indicated in the reaction below. The rate of decrease of the $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ion under a certain set of conditions is $3.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.

$$
3 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+} \rightarrow 3 \mathrm{CH}_{3} \mathrm{COCH}_{3}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

What is the rate of increase in the concentration of Cr^{3+} ?

What is the rate of decrease in the concentration of 2-propanol?

$6.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
$9.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$

The rate law for this reaction is: \quad Rate $=k\left[\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2}\right]\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right]\left[\mathrm{H}^{+}\right]^{2}$
Complete the following table by writing increase, decrease or no change in the box to indicate how the rate of the reaction is affected by each of the following changes.

Increase in $\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right]$	increase
Increase in $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$	no change
Increase in pH	decrease
Increase in temperature	increase

- Complete the following table.

Formula	Systematic name	Oxidation state of transition metal	Number of d-electrons
$\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]$	potassium tetracyanidoplatinate(II)	$\mathbf{+ 2}$	$\mathbf{8}$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$	hexaaquacobalt(II) chloride	$\mathbf{+ 2}$	$\mathbf{7}$

- Explain in terms of their electronic configurations and ionisation energies why the alkali metals (Group 1) are powerful reducing agents.

Ionisation energies increase across a period in the periodic table because the increasing nuclear charge holds the electrons more tightly. Hence, in any period, the Group I element is the one that most easily loses its electron (from the s subshell). This electron is then available to reduce another species.

- The half-life for the first order decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ is $6.00 \times 10^{4} \mathrm{~s}$ at $20^{\circ} \mathrm{C}$. Calculate the rate constant, k, at this temperature.

For a first-order reaction, the half-life, $\mathbf{t}_{1 / 2}$, is related to the rate constant, k, by:

$$
t_{1 / 2}=\frac{\ln 2}{k}=\frac{\ln 2}{\left(6.00 \times 10^{4} \mathrm{~s}^{-1}\right)}=1.16 \times 10^{-5} \mathrm{~s}^{-1}
$$

$$
k=1.16 \times 10^{-5} \mathrm{~s}^{-1}
$$

What percentage of the $\mathrm{N}_{2} \mathrm{O}_{5}$ molecules will have reacted after one hour?

For a first-order reaction:

$$
\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}-k t \quad \text { or } \quad \frac{\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}=-k t
$$

Hence for $t=1$ hour $=(60 \times 60) s=3600 s$,

$$
\frac{\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}=-\left(1.16 \times 10^{-5} \mathrm{~s}^{-1}\right) \times(3600 \mathrm{~s})=0.0418
$$

$$
\frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}=0.959 \text { or } 95.9 \% \text { remains. }
$$

The amount that has reacted is $(100.0-95.9)=4.1 \%$

