Marks • At a certain temperature the following data were collected for the decomposition of HI. $2HI \rightarrow H_2 + I_2$ Initial [HI] (mol L^{-1}) Initial rate of reaction (mol $L^{-1} s^{-1}$) Experiment 1.0×10^{-2} 4.0×10^{-6} 1 2.0×10^{-2} 2 1.6×10^{-5} 3.0×10^{-2} 3.6×10^{-5} 3 Determine the rate law for the reaction. Between experiment (1) and (2), the concentration of HI is doubled. This leads to

the rate increasing by a factor of 4. Between experiment (1) and (3), the concentration of HI is trebled. This leads the

to rate increasing by a factor 9.

The rate is proportional to [HI]²:

rate = $k[\text{HI}]^2$

What is the value of the rate constant for the decomposition of HI?

Using experiment (1), [HI] = 1.0×10^{-2} mol L⁻¹ and rate = 4.0×10^{-6} mol L⁻¹ s⁻¹:

rate = $k[HI]^2$ $4.0 \times 10^{-6} \text{ mol } \text{L}^{-1} \text{ s}^{-1} = (k) \times (1.0 \times 10^{-2} \text{ mol } \text{L}^{-1})^2$

$$k = (4.0 \times 10^{-6} \text{ mol } \text{L}^{-1} \text{ s}^{-1}) / (1.0 \times 10^{-2} \text{ mol } \text{L}^{-1})^2 = 4.0 \times 10^{-2} \text{ mol}^{-1} \text{ L} \text{ s}^{-1}$$

Answer: $4.0 \times 10^{-2} \text{ mol}^{-1} \text{ L s}^{-1}$

- CHEM1902/4
- Four experiments were conducted to discover how the initial rate of consumption of BrO₃⁻ ions in the reaction below varied as the concentrations of the reactants were changed.

Experiment	Initial concentration (mol L^{-1})			Initial rate	
	BrO_3^-	Br^{-}	H^{+}	$(\text{mol } L^{-1} \text{ s}^{-1})$	
1	0.10	0.10	0.10	1.2×10^{-3}	
2	0.20	0.10	0.10	2.4×10^{-3}	
3	0.10	0.30	0.10	3.5×10^{-3}	
4	0.20	0.10	0.15	5.4×10^{-3}	

 $BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$

Use the experimental data in the table above to determine the order of the reaction with respect to *each* reactant.

Between experiments (1) and (3), $[Br^{-}]$ and $[H^{+}]$ are kept constant but $[BrO_{3}^{-}]$ is doubled. This doubles the rate: the rate is proportional to $[BrO_{3}^{-}]^{1}$ and so is first order with respect to BrO_{3}^{-} .

Between experiments (2) and (4), $[BrO_3^-]$ and $[Br^-]$ are kept constant but $[H^+]$ is increased by a factor of (0.15/0.10) = 1.5. This increases the rate by a factor of $(5.4 \times 10^{-3} / 2.4 \times 10^{-3}) = 2.25$: the rate is proportional to $[H^+]^2$ as $(1.5)^2 = 2.25$ and so is second order with respect to H^+ .

Between experiments (1) and (2), $[BrO_3^-]$ and $[H^+]$ are kept constant but $[Br^-]$ is increased by a factor of 3. This increases the rate by a factor of $(3.5 \times 10^{-3} / 1.2 \times 10^{-3}) = 2.9$: the rate is proportional to $[Br^-]^1$ and so is first order with respect to Br⁻.

Overall,

rate = $k[BrO_3^{-}][Br^{-}][H^{+}]^2$

What is the rate of formation of Br_2 when $[BrO_3^-] = [Br^-] = [H^+] = 0.10$ M?

From the table, when $[BrO_3^-] = [Br^-] = [H^+] = 0.10$ M, the rate of consumption of BrO_3^- is 1.2×10^{-3} M s⁻¹. From the chemical equation, Br_2 is produced at three times this rate.

The rate of production of Br₂ is 3.6×10^{-3} M s⁻¹.

Write the rate law for the reaction and determine the value of the rate constant, k.

From above, rate = $k[BrO_3^-][Br^-][H^+]^2$. Using experiment (1):

ANSWER CONTINUES ON THE NEXT PAGE

rate = $k[BrO_3^{-}][Br^{-}][H^{+}]^2$ = $k(0.10 \text{ M})(0.10 \text{ M})(0.10 \text{ M})^2 = k(0.00010 \text{ M}^4) = 1.2 \times 10^{-3} \text{ M s}^{-1}$

So,

$$k = (1.2 \times 10^{-3} \text{ M s}^{-1}) / (0.00010 \text{ M}^3) = 12 \text{ M}^{-3} \text{ s}^{-1}$$

Marks

7

• Nitrogen monoxide, a noxious pollutant, reacts with oxygen to produce nitrogen dioxide, another toxic gas:

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

The following rate data were collected at 225 °C.

Experiment	[NO] ₀ (M)	$[O_2]_0(M)$	Initial rate, $-d[O_2]/dt$, (M s ⁻¹)
1	1.3×10^{-2}	1.1×10^{-2}	1.6×10^{-3}
2	1.3×10^{-2}	2.2×10^{-2}	3.2×10^{-3}
3	2.6×10^{-2}	1.1×10^{-2}	6.4×10^{-3}

Determine the rate law for the reaction.

Between experiments 1 and 2, [NO] is held constant and $[O_2]$ doubles. This leads to a doubling of the rate: the reaction is 1^{st} order with respect to O_2 .

Between experiments 1 and 3, $[O_2]$ is held constant and [NO] doubles. This leads to the rate increasing by a factor of 4: the rate is 2^{nd} order with respect to NO.

The rate law is therefore:

 $-\mathbf{d}[\mathbf{O}_2]/\mathbf{dt} = k[\mathbf{NO}]^2[\mathbf{O}_2]$

Calculate the value of the rate constant at 225 °C.

In experiment 1, $[NO] = 1.3 \times 10^{-2}$ M, $[O_2] = 1.1 \times 10^{-2}$ M and rate $= 1.6 \times 10^{-3}$ M s⁻¹. Substituting these values into the rate law gives:

 $(1.6 \times 10^{-3} \text{ M s}^{-1}) = k \times (1.3 \times 10^{-2} \text{ M})^2 \times (1.1 \times 10^{-2} \text{ M})$

Hence:

 $k = 860 \text{ M}^{-2} \text{ s}^{-1}$

Answer: 860 $M^{-2} s^{-1}$

Calculate the rate of appearance of NO₂ when [NO] = $[O_2] = 6.5 \times 10^{-3}$ M.

Substituting the values into the rate law gives:

$$-\mathbf{d}[\mathbf{O}_2]/\mathbf{dt} = k[\mathbf{NO}]^2[\mathbf{O}_2]$$

= $(860 \text{ M}^{-2} \text{ s}^{-1}) \times (6.5 \times 10^{-3} \text{ M})^2 \times (6.5 \times 10^{-3} \text{ M}) = 2.35 \times 10^{-4} \text{ M s}^{-1}$

From the chemical equation, the rate of appearance of NO₂ is *twice* the rate of loss of O₂:

$$d[NO_2]/dt = 2 \times -d[O_2]/dt = (2 \times 2.35 \times 10^{-4} \text{ M s}^{-1}) = 4.7 \times 10^{-4} \text{ M s}^{-1}$$
Answer: $4.7 \times 10^{-4} \text{ M s}^{-1}$

ANSWER CONTINUES ON THE NEXT PAGE

Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

A possible mechanism is: Step 1: NO + NO \rightleftharpoons N₂O₂ fast equilibrium Step 2: N₂O₂ + O₂ \rightarrow 2NO₂ slow (*i.e.* rate determining) If the first step is at equilibrium with equilibrium constant K₁: $K_1 = \frac{[N_2O_2]}{[NO]^2} \Rightarrow [N_2O_2] = K_1[NO]^2$ The rate of step 2 is therefore rate = k₂[N₂O₂][O₂] = k₂K₁[NO]²[O₂] This is consistent with the experiment rate law with $k = k_1K$.

• 2-Bromo-	2-methylpropane read	ets with hydroxi	de ions to give 2-methyl-2-propanol.
	$(CH_3)_3$	$CBr + OH^{-} \rightarrow$	(CH ₃) ₃ COH
The follo	wing rate data were co	ollected at 55 °C.	
Experiment	$[(CH_3)_3CBr]_0(M)$	$[OH^{-}]_{0}(M)$	Initial rate (d[(CH ₃) ₃ COH]/dt, M s ^{-1})
1	0.050	0.10	5.0×10^{-4}
2	0.20	0.10	2.0×10^{-3}
3	0.20	0.30	2.0×10^{-3}
Determine	the rate law for the rea	action.	
[(CH ₃) ₃ CB	r].		g by a factor of 4: rate α
	-		0 is constant. [OH ⁻] ₀ is increased by a rate. The rate is independent of
Overall, ra	te = $k[(CH_3)_3CBr]$.		
Calculate th	ne value of the rate con	nstant at 55 °C.	
From the r	ate law, <i>k</i> = rate / [(C	CH ₃) ₃ CBr].	
For experi	ment 1, rate = $5 \times 10^{\circ}$	⁴ M s ⁻¹ and [(Cl	$H_3)_3CBr] = 0.050 M and so$
k = (5 >	$ imes 10^{-4} { m M s^{-1}}) / (0.050 { m M s^{-1}})$	$M) = 1.0 \times 10^{-2} \mathrm{s}$	s ⁻¹
		Ans	wer: $k = 1.0 \times 10^{-2} \text{ s}^{-1}$
Suggest a p Explain you		or the reaction ba	used on the form of the rate law.
	is independent of [C mining step.)H ⁻] suggesting	that it is involved in a step after the
	is directly proportion h is unimolecular in (Br] suggesting that a rate determining
A possibl	e mechanism is:		
(1) (1	$(\mathbf{H}_{a})_{a}\mathbf{Br} \rightarrow (\mathbf{CH}_{a})_{a}^{+}$	⊥ Br [−]	slow

(1) $(CH_3)_3Br \to (CH_3)_3^+ + Br^-$ slow (2) $(CH_3)_3^+ + OH^- \to (CH_3)_3OH$ fast

Marks

2

The reaction is exothermic. Draw the potential energy *vs* reaction coordinate diagram for this mechanism, labelling all species that can be isolated.

From 2008-N-6, the mechanism involves two steps: a slow first step and a fast second step. As the first step is rate determining, it has a higher activation energy. As the reaction is exothermic overall, the products have lower enthalpy than the reactants.

• Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water according to the following equation.

$$2NO(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$$

The following rate data were collected at 225 °C.

Experiment	[NO] ₀ (M)	[H ₂] ₀ (M)	Initial rate (d[NO]/dt, M s ⁻¹)
1	6.4×10^{-3}	$2.2 imes 10^{-3}$	$2.6 imes10^{-5}$
2	$1.3 imes 10^{-2}$	$2.2 imes 10^{-3}$	$1.0 imes 10^{-4}$
3	6.4×10^{-3}	$4.4 imes 10^{-3}$	$5.1 imes10^{-5}$

Determine the rate law for the reaction.

Between experiments (1) and (2), $[H_2]_0$ is constant and $[NO]_0$ doubles. As the rate increases by a factor of $\frac{1.0 \times 10^{-4}}{2.6 \times 10^{-5}} = 3.8 \sim 4$, the rate is second order with respect to $[NO]_0$. Between experiments (1) and (3), $[H_2]_0$ doubles and $[NO]_0$ is constant. As the rate increases by a factor of $\frac{5.1 \times 10^{-5}}{2.6 \times 10^{-5}} = 2.0$, the rate is first order with respect to $[NO]_0$. Overall,

rate = $k[NO]^2[H_2]$

Calculate the value of the rate constant at 225 °C.

Using experiment (1), $2.6 \times 10^{-5} \text{ M s}^{-1} = k \times (6.4 \times 10^{-3} \text{ M})^2 \times (2.2 \times 10^{-3} \text{ M})$ $k = 2.9 \times 10^2 \text{ M}^{-2} \text{ s}^{-1}$ Answer: $k = 2.9 \times 10^2 \text{ M}^{-2} \text{ s}^{-1}$

Calculate the rate of appearance of N₂O when $[NO] = [H_2] = 6.6 \times 10^{-3}$ M.

rate of disappearance of NO =
$$k[NO]^{2}[H_{2}]$$

= $(2.9 \times 10^{2} \text{ M}^{2} \text{ s}^{-1}) \times (6.6 \times 10^{-3} \text{ M})^{2} \times (6.6 \times 10^{-3} \text{ M})$
= $8.3 \times 10^{-5} \text{ M s}^{-1}$

The rate of appearance of N_2O is *half* this value as, from the chemical equation, NO is disappearing at twice the rate than N_2O is appearing.

Answer: $4.1 \times 10^{-5} \text{ M s}^{-1}$

ANSWER CONTINUES ON THE NEXT PAGE

Marks 5 Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

Step 1: $2NO(g) \rightleftharpoons N_2O_2(g)$ This is a fast equilibrium and so $K = \frac{[N_2O_2(g)]}{[NO(g)]^2}$ or $[N_2O_2(g)] = K[NO(g)]^2$ Step 2: $N_2O_2(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$ slow (*i.e.* rate determining) As this is rate determining, rate = $k_2[N_2O_2][H_2]$ As $[N_2O_2(g)] = K[NO(g)]^2$, this can be rewritten as, rate= $kK[NO]^2[H_2]$ This is consistent with the experimentally determined rate law with $k_{exp} = k_2K$.

Marks

7

• The major pollutants NO(g), CO(g), NO₂(g) and CO₂(g) are emitted by cars and can react according to the following equation.

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

The following rate data were collected at 225 °C.

Experiment	$[NO_2]_0(M)$	[CO] ₀ (M)	Initial rate (d[NO ₂]/dt, M s ^{-1})
1	0.263	0.826	$1.44 imes 10^{-5}$
2	0.263	0.413	$1.44 imes 10^{-5}$
3	0.526	0.413	$5.76 imes10^{-5}$

Determine the rate law for the reaction.

Between experiments (1) and (2), $[NO_2]_0$ is constant and $[CO]_0$ is halved. The rate does not change. The rate is independent of [CO]: zero order with respect to [CO].

Between experiments (2) and (3), $[CO]_0$ is kept constant and $[NO_2]_0$ is doubled. The rate increases by a factor of four: the rate is second order with respect to $[NO_2]$.

Overall,

rate $\alpha [NO_2]^2 = k[NO_2]^2$

Calculate the value of the rate constant at 225 °C.

In experiment (1), rate= 1.44×10^{-5} M s⁻¹ when [NO₂] = 0.263 M. Using the rate law:

 $1.44 \times 10^{-5} = k \times (0.263)^2$ so $k = 2.08 \times 10^{-4}$

The units of k can be deduced from the rate law:

rate =
$$k[NO_2]^2$$

M s⁻¹ = (units of k) \times (M)² so k must have units of "M⁻¹ s⁻¹"

Answer: $2.08 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$

ANSWER CONTINUES ON THE NEXT PAGE

Calculate the rate of appearance of CO_2 when $[NO_2] = [CO] = 0.500$ M.

When [NO₂] = 0.500 M, rate =
$$\frac{d[NO_2]}{dt}$$
 = (2.08 × 10⁻⁴) × (0.500)² = 5.20 × 10⁻⁵ M s⁻¹

From the chemical equation, one mole of CO_2 is produced for every mole of NO_2 that is removed. Thus, rate of appearance of CO_2 = rate of loss of NO_2 .

Answer: $5.20 \times 10^{-5} \text{ M s}^{-1}$

Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

A possible mechanism is:

$NO_2(g) + NO_2(g) \rightarrow NO(g) + NO_3(g)$	(slow)
$NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$	(fast)

The first step is slow and is rate determining. For this step, rate $\alpha [NO_2]^2$, as observed. The second step is fast and does not contribute to the overall rate of the reaction and so the rate is independent of [CO(g)].

• 2-Propanol can be oxidised to acetone using $Cr_2O_7^{2-}$ in acidic solution as indicated in the reaction below. The rate of decrease of the $Cr_2O_7^{2-}$ ion under a certain set of conditions is 3.0 mol L^{-1} s ⁻¹ .					Marks 4
$3CH_3CH(OH)CH_3 + Cr_2O_7^{2-} + 8H^+ \rightarrow 3CH_3COCH_3 + 2Cr^{3+} + 7H_2O$					
What is the rate of increase in the concentration of Cr^{3+} ?			6.0 m	ol L ⁻¹ s ⁻¹	
What is the rate of decrease in the concentration of 2-propanol			? 9.0 mol L ⁻¹ s ⁻¹		
The rate law for	or this reaction is: $Rate = k$ [C	² r ₂ O ₇ ^{2–}][CH ₃ CH	I(OH)CH ₃][H	+]2	
Complete the following table by writing <i>increase</i> , <i>decrease</i> or <i>no change</i> in the box to indicate how the rate of the reaction is affected by each of the following changes.					
	Increase in [CH ₃ CH(OH)CH ₃] increase				
Increase in [CH ₃ COCH ₃] no change					
Increase in pH decrease					
Increase in temperature increase					
Complete the following table.					4
Formula	Systematic name		Oxidation state of transition metal	Number of <i>d</i> -electrons	
K ₂ [Pt(CN) ₄]	potassium tetracyanidoplatinate(II)		+2	8	
[Co(H ₂ O) ₆]Cl ₂	hexaaquacobalt(II) chloride		+2	7	

• Explain in terms of their electronic configurations and ionisation energies why the alkali metals (Group 1) are powerful *reducing* agents.

Ionisation energies increase across a period in the periodic table because the increasing nuclear charge holds the electrons more tightly. Hence, in any period, the Group I element is the one that most easily loses its electron (from the *s* subshell). This electron is then available to reduce another species.

• The half-life for the first order decomposition of $N_2O_5(g)$ is 6.00×10^4 s at 20 °C. Calculate the rate constant, *k*, at this temperature.

For a first-order reaction, the half-life, $t_{1/2}$, is related to the rate constant, k, by:

 $k = 1.16 \times 10^{-5} \text{ s}^{-1}$

$$t_{1/2} = \frac{\ln 2}{k} = \frac{\ln 2}{(6.00 \times 10^4 \text{ s}^{-1})} = 1.16 \times 10^{-5} \text{ s}^{-1}$$

For a first-order reaction:

$$\ln[N_2O_5] = \ln[N_2O_5]_0 - kt$$
 or $\frac{\ln[N_2O_5]}{\ln[N_2O_5]_0} = -kt$

Hence for t = 1 hour = (60×60) s = 3600 s,

$$\frac{\ln[N_2O_5]}{\ln[N_2O_5]_0} = -(1.16 \times 10^{-5} \text{ s}^{-1}) \times (3600 \text{ s}) = 0.0418$$

$$\frac{[N_2O_5]}{[N_2O_5]_0} = 0.959 \text{ or } 95.9\% \text{ remains.}$$

The amount that has reacted is (100.0 - 95.9) = 4.1 %

ANSWER: 4.1%

Marks

2