•	At a certain temperature the following data were collected for the decomposition
	of HI.

Marks 4

$$2HI \rightarrow H_2 + I_2$$

Experiment	Initial [HI] (mol L ⁻¹)	Initial rate of reaction (mol L ⁻¹ s ⁻¹)
1	1.0×10^{-2}	4.0×10^{-6}
2	2.0×10^{-2}	1.6×10^{-5}
3	3.0×10^{-2}	3.6×10^{-5}

Determine the rate law for the reaction.

What is the value of the rate constant for the	ne decomposition of HI?
	Angwar
	Answer:

• Four experiments were conducted to discover how the initial rate of consumption of BrO₃⁻ ions in the reaction below varied as the concentrations of the reactants were changed.

Marks 7

$$BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$$

Experiment	Initial concentration (mol L ⁻¹)			Initial rate
	$\mathrm{BrO_3}^-$	Br^-	H^{+}	$(\text{mol } L^{-1} \text{ s}^{-1})$
1	0.10	0.10	0.10	1.2×10^{-3}
2	0.20	0.10	0.10	2.4×10^{-3}
3	0.10	0.30	0.10	3.5×10^{-3}
4	0.20	0.10	0.15	5.4×10^{-3}

Use the experimental data in the table above to determine the order of the reaction with respect to *each* reactant.

What is the rate of formation of Br_2 when $[BrO_3^-] = [Br^-] = [H^+] = 0.10$ M?

Write the rate law for the reaction and determine the value of the rate constant, k.

• Nitrogen monoxide, a noxious pollutant, reacts with oxygen to produce nitrogen dioxide, another toxic gas:

Marks 7

$$2NO(g) \ + \ O_2(g) \ \rightarrow \ 2NO_2(g)$$

The following rate data were collected at 225 °C.

Experiment	[NO] ₀ (M)	$[O_2]_0$ (M)	Initial rate, -d[O ₂]/dt, (M s ⁻¹)
1	1.3×10^{-2}	1.1×10^{-2}	1.6×10^{-3}
2	1.3×10^{-2}	2.2×10^{-2}	3.2×10^{-3}
3	2.6×10^{-2}	1.1×10^{-2}	6.4×10^{-3}

1	Datarmina	the rote	love for t	the reaction	
	Determine	the rate	1aw tor i	rne reaction	

Calculate the value of the rate constant at 2	25 °C.
	Answer:
Calculate the rate of appearance of NO ₂ wl	nen [NO] = $[O_2] = 6.5 \times 10^{-3} \text{ M}.$
	Answer:
Suggest a possible mechanism for the reac	tion based on the form of the rate law
Explain your answer.	non based on the form of the fate law.
Emplani your answer.	

• 2-Bromo-2-methylpropane reacts with hydroxide ions to give 2-methyl-2-propanol.

Marks 5

$$(CH_3)_3CBr + OH^- \rightarrow (CH_3)_3COH$$

The following rate data were collected at 55 °C.

Experiment	$[(CH_3)_3CBr]_0(M)$	$[OH^{-}]_{0}(M)$	Initial rate (d[(CH ₃) ₃ COH]/dt, M s ⁻¹)
1	0.050	0.10	5.0×10^{-4}
2	0.20	0.10	2.0×10^{-3}
3	0.20	0.30	2.0×10^{-3}

Experiment	$[(CH_3)_3CBr]_0(M)$	$[OH^{-}]_{0}(M)$	Initial rate $(d[(CH_3)_3COH]/dt, M s^{-1})$
1	0.050	0.10	5.0×10^{-4}
2	0.20	0.10	2.0×10^{-3}
3	0.20	0.30	2.0×10^{-3}
Determine t	the rate law for the rea	action.	
Calculate th	ne value of the rate co	nstant at 55 °C.	
		Ansv	ver·
Suggest a p	ossible mechanism fo		sed on the form of the rate law.
Explain you	ır answer.		

CHEM1902/1904 2008-N-7 November 2008

The reaction is exothermic. Draw the potential energy <i>vs</i> reaction coordinate diagran for this mechanism, labelling all species that can be isolated.	Marks 2

5

Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water
according to the following equation.

$$2NO(g) \ + \ H_2(g) \ \to \ N_2O(g) \ + \ H_2O(g)$$

Experiment	[NO] ₀ (M)	$[H_2]_0(M)$	Initial rate (d[NO]/dt, M s ⁻¹)
1	6.4×10^{-3}	2.2×10^{-3}	2.6×10^{-5}
2	1.3×10^{-2}	2.2×10^{-3}	1.0×10^{-4}
3	6.4×10^{-3}	4.4×10^{-3}	5.1×10^{-5}

The follow	wing rate data were col	lected at 225 °C.	
Experiment	[NO] ₀ (M)	$[H_2]_0(M)$	Initial rate (d[NO]/dt, M s ⁻¹)
1	6.4×10^{-3}	2.2×10^{-3}	2.6×10^{-5}
2	1.3×10^{-2}	2.2×10^{-3}	1.0×10^{-4}
3	6.4×10^{-3}	4.4×10^{-3}	5.1×10^{-5}
Determine t	the rate law for the reac	tion.	
Calculate th	ne value of the rate cons	stant at 225 °C.	
		Answer:	
Calculate th	ne rate of appearance of	N_2O when $[NO] = [$	$H_2] = 6.6 \times 10^{-3} \text{ M}.$
		Answer:	
Suggest a p Explain you		the reaction based or	n the form of the rate law.
•			

• The major pollutants NO(g), CO(g), NO₂(g) and CO₂(g) are emitted by cars and can react according to the following equation.

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

The following rate data were collected at 225 °C.

Experiment	$[NO_2]_0$ (M)	[CO] ₀ (M)	Initial rate (d[NO ₂]/dt, M s ⁻¹)
1	0.263	0.826	1.44×10^{-5}
2	0.263	0.413	1.44×10^{-5}
3	0.526	0.413	5.76×10^{-5}

Experiment	$[NO_2]_0$ (M)	[CO] ₀	(M)	Initial rate (d[NO ₂]/dt, M s ⁻¹)
1	0.263	0.8	26	1.44×10^{-5}
2	0.263	0.4	13	1.44×10^{-5}
3	0.526	0.4	13	5.76×10^{-5}
Determine t	the rate law for the reac	ction.		
Calculate th	ne value of the rate cons	stant at 225	°C.	
	te varie of the face cont		<u> </u>	
			A	
			Answer:	
Calculate th	ne rate of appearance of	f CO ₂ when	$[NO_2] =$	[CO] = 0.500 M.
		1	Answer:	
Suggest a p Explain you		the reaction	n based o	on the form of the rate law.

Marks
4

•	2-Propanol can be oxidised to acetone using Cr ₂ O ₇ ²⁻ in acidic solution as indicated in the
	reaction below. The rate of decrease of the $Cr_2O_7^{2-}$ ion under a certain set of conditions
	is $3.0 \text{ mol } L^{-1} \text{ s}^{-1}$.

$$3\text{CH}_3\text{CH(OH)CH}_3 \ + \ \text{Cr}_2\text{O}_7^{2-} \ + \ 8\text{H}^+ \ \rightarrow \ 3\text{CH}_3\text{COCH}_3 \ + \ 2\text{Cr}^{3+} \ + \ 7\text{H}_2\text{O}$$

What is the rate of increase in the concentration of Cr^{3+} ?

What is the rate of decrease in the concentration of 2-propanol?

The rate law for this reaction is: $Rate = k \left[\text{Cr}_2\text{O}_7^{2-} \right] \left[\text{CH}_3\text{CH}(\text{OH})\text{CH}_3 \right] \left[\text{H}^+ \right]^2$

Complete the following table by writing *increase*, *decrease* or *no change* in the box to indicate how the rate of the reaction is affected by each of the following changes.

Increase in [CH ₃ CH(OH)CH ₃]
Increase in [CH ₃ COCH ₃]
Increase in pH
Increase in temperature

• Complete the following table.

Formula	Systematic name	Oxidation state of transition metal	Number of <i>d</i> -electrons
K ₂ [Pt(CN) ₄]			
[Co(H ₂ O) ₆]Cl ₂			

4

lkali metals (Group 1) are pow	onic configurations and ionisation energies why the verful reducing agents.	
The half-life for the first order α Calculate the rate constant, k , and	decomposition of $N_2O_5(g)$ is 6.00×10^4 s at 20 °C. t this temperature.	
	k =	
What percentage of the N ₂ O ₅ m	nolecules will have reacted after one hour?	