

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Apply your understanding of curly arrows to complete a mechanism for the following Mark ٠ S_N reaction: S 3 H⊕ + H₂O € (_⊕ÓH2 J OH Cl^{Θ} Cl K Why does the rearrangement step $(J \rightarrow K)$ occur?

 \mathbf{K} (the tertiary carbocation) is more stable than \mathbf{J} (the secondary carbocation) as it is more substituted and hence more stabilised by hyperconjugation.

Marks

3

• Add curly arrows to complete the mechanism of the unusual E2 reaction shown below, the Grob Fragmentation. (Note that KO^tBu is potassium *tert*-butoxide, a strong base.)

The groups must have an antiperiplanar alignment in order that the orbitals overlap correctly to form the new bonds.

• Propose a structure for the product of the following reaction. Outline a mechanism for its formation, showing all curly arrows and intermediates.

Marks 3

• Draw the structure(s) of the major organic product(s) formed in each of the following reactions. Give the names of the products where requested.

Marks 3

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Complete the following table.			Marks 2
Starting material	Reagents / Conditions	Major organic product(s)	
	HCl CCl ₄ (solvent)		
OH CI	Na	$ \begin{array}{c} $	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Use curly arrow notation to illustrate the mechanism of each of the following reactions.

