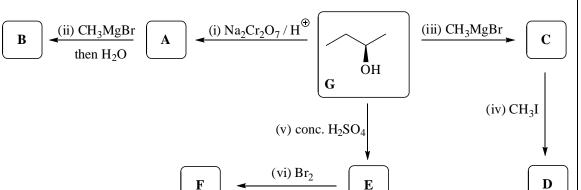
• Propose a mechanism for the following reaction.

Mark s

4

What isomeric product might also form in this reaction?

If the Cl attacks on the left hand side of the molecule, the analogous reaction leads to:


Why is **T** the major product?

Steric effects. The CH_2 group on the right is more accessible than the $CH(CH_3)$ group on the left for S_N2 attack by the $C\Gamma$ nucleophile.

Marks

10

• Consider the following reaction sequences beginning with the alcohol **G**.

What is the systematic name for **G**?

(R)-2-butanol

Suggest structures for compounds A - F in the reaction sequences above.

A		В	С
	O	OH	O _⊖ ⊕ MgBr
D		E and/or	Br Br

What type of reaction is occurring at each of the following steps?

Step (iii)	acid/base	
Step (iv)	S _N 2 (nucleophilic substitution)	
Step (v)	elimination	
Step (vi)	electrophilic addition	

• Draw the constitutional formula(s) of the major organic product(s) formed in each of the following reactions.

Marks 6

• Give the constitutional formula and the name of the major organic product of each of the following reactions.

Marks 2

$$\begin{array}{c}
1. \text{ Na} \stackrel{\textcircled{\oplus}}{\longrightarrow} \text{NH}_2 \\
\hline
2. \text{ CH}_3\text{CH}_2\text{I}
\end{array}$$

$$\begin{array}{c}
\text{H} \\
\text{C} \\
\text{CH}_3
\end{array}$$

$$\begin{array}{c}
\text{CH}_3 \\
\text{CH}_3
\end{array}$$

$$\begin{array}{c}
\text{H} \\
\text{CH}_3
\end{array}$$

$$\begin{array}{c}
\text{CH}_3 \\
\text{H}
\end{array}$$

$$\begin{array}{c}
\text{Name: 2-methylhex-3-yne}$$