CHEM1001 Worksheet 3: Ionic and Covalent Bonding

Model 1: Ionic Bonding

The compounds formed by metals and non-metals contain *ionic* bonds. Metal atoms lose electrons to form cations. Non-metal atoms gain electrons to form anions. The interactions between cations and anions are *ionic* and are often called *ionic bonds*. Simply, it is the coming together of opposite charges in a strict ratio based on *electrostatic attraction*.

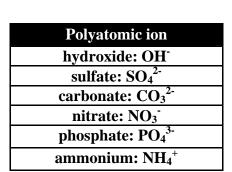
Ionic compounds form *extended ionic lattices* which contain an 'infinite' networks of ionic bonds.

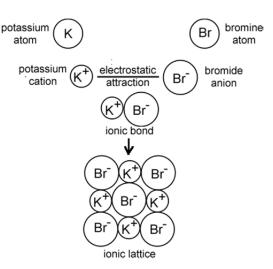
Cations *lose* electrons so that they have an empty outer shell: Group 1 metals lose 1 electron, Group 2 metals lose 2 electrons and Group 13 metals lose 3 electrons.

Anions *gain* electrons so that they have a full outer shell: Group 17 non-metals gain 1 electron, Group 16 nonmetals gain 2 electrons and Group 15 non-metal gain 3 electrons. Gain or loss of more than 3 electrons requires considerable energy and rarely occurs. This limits the combinations of elements that can form ionic compounds.

Critical thinking questions

- 1. What charge will a group 2 cation have?
- 2. What charge will a group 16 anion have?
- 3. What charge will a group 15 anion have?

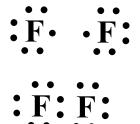

Ionic compounds form in strict ratios of anions to cations to gain overall neutrality. For example, Ca^{2+} and Cl^{-} will form an ionic lattice in the ratio 1 : 2 (1 × 2 + 2 × (-1) = 0). The resulting ionic compound has the formula $CaCl_2$ and is calcium chloride. Notice that the *cation is given first* in the formula and name.


- 4. Predict the ions formed for each of the elements below. iodine, sodium, oxygen, aluminium, nitrogen, sulfur, bromine, magnesium
- 5. Form as many ionic compounds as you can from this list and write down the formula of each.

Some ions contain groups of atoms. These are called *polyatomic ions*. The groups of atoms in a polyatomic ion tend to stay together in reactions. Some of the most common are listed opposite. Polyatomic ions can form compounds with each other and with atomic ions. Examples include:

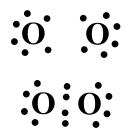
- calcium nitrate: Ca(NO₃)₂
- calcium sulfate: CaSO₄
- ammonium chloride: NH₄Cl

Note: Two NO₃⁻ ions are needed to balance the charge of Ca²⁺, just as in CaCl₂. To show this, brackets are placed around the polyatomic ion with the two outside the bracket. In the other examples, only one polyatomic ion is required and no brackets are used.



- 6. Write down the formulae of the following ionic compounds. (*Hint*: remember to put the cation first, to balance the charges and to use bracket if required around a polyatomic ion.)
 - (i) sodium hydroxide
 (ii) sodium nitrate
 (iii) sodium sulfate
 (iv) sodium phosphate
 (v) magnesium hydroxide
 (vi) ammonium sulfate

Model 2: Covalent bonding


The interaction between two non-metals is *covalent*. Two (or more) non-metals form *covalent bonds*. In a *covalent bond*, two atoms *share* their electrons, in order for each to gain a noble gas configuration. For most of the atoms you come across, this will mean having 8 electrons in the valence shell – the octet rule.

For some elements in period 3 and below, most notably S and P, this rule can be broken. Compounds of these elements will be discussed later. each F atom has 7 valence electrons so require 1 more to reach 8

each F atom shares 1 of its electrons to reach 8

each O atom has 6 valence electrons so require 2 more to reach 8

each O atom shares 2 of its electrons to reach 8

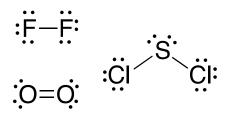
Critical thinking questions

1. Label the bonding (shared) and non-bonding (unshared) electron pairs in F_2 and O_2 on the diagram.

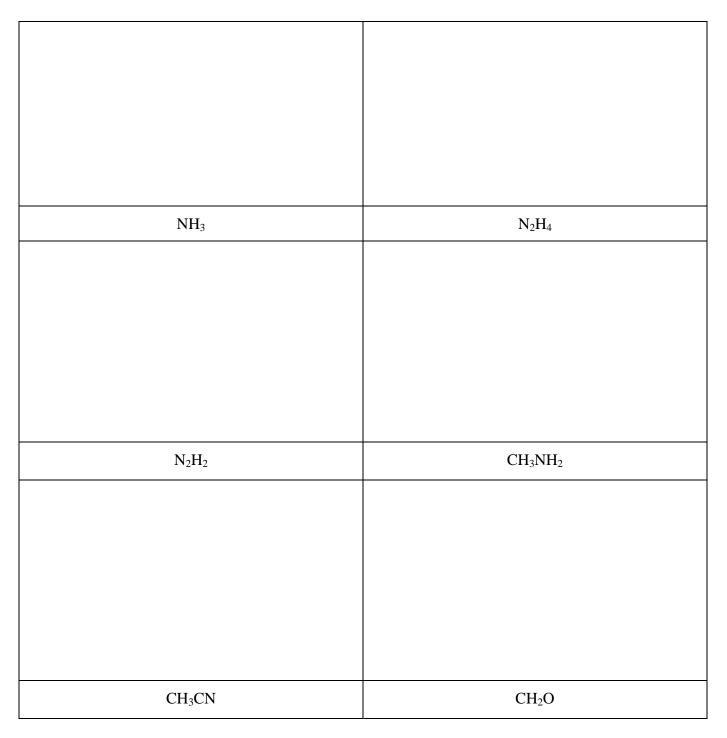
When the non-metals are not in the same group, one atom shares electrons with several other atoms. Consider the formula of a compound containing sulfur and chlorine.

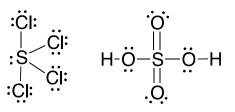
- sulfur: 6 valence electrons so needs 2 to reach 8
- chlorine: 7 valence electrons, needs 1 to reach 8

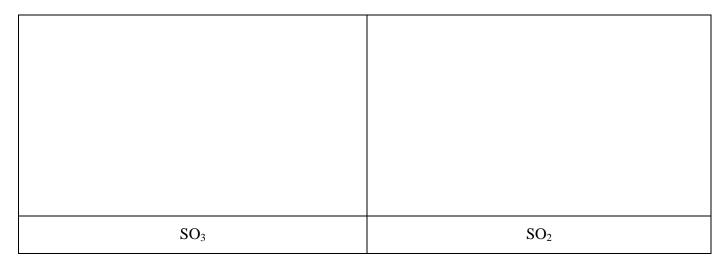
To achieve 8 electrons on each atom, S bonds to two Cl atoms to form SCl_2 or sulfur dichloride. The atom on the left in the Periodic Table (S) is given first and the prefix "di" shows there are 2 Cl atoms.


2. How many electrons do the elements below need to form an isoelectronic configuration with a noble gas?

hydrogen, carbon, nitrogen, oxygen, fluorine, silicon, phosphorus, sulfur, chlorine


3. Each covalent bond leads to each atom involved gaining 1 electron to its total. How many bonds do the elements below need to form an isoelectronic configuration with a noble gas? hydrogen, carbon, nitrogen, oxygen, fluorine, silicon, phosphorus, sulfur, chlorine


In chemical structures, sticks are used to represent covalent bonds: a single stick represents sharing of 2 electrons and a single bond, 2 sticks represents sharing of 4 electrons and a double bond and 3 sticks represents sharing of 6 electrons and a triple bond. Lone pairs are shown as dots. The chemical structures of F_2 , O_2 and SCl_2 are shown opposite.


- 4. What is the total number of valence electrons around each atom in F_2 , O_2 and SCl_2 ?
- 5. Show the bonding in the following molecules and include any lone pairs. (*Hint*: remember from Q3, H can only form a single bond, C needs to form 4 bonds, etc. Elements can bond to themselves and can use single, double or triple bonds.)

Elements in the third period and below are able to fit more than 8 electrons in their valence shell. Although many of their molecules do obey the octet rule, some exceed it, particularly when they are surrounded by O, F or Cl atoms. Two examples are shown opposite.

- 6. What is the total number of valence electrons around the S atoms in SCl_4 and H_2SO_4 ?
- 7. In SCl₄, sulfur has 6 valence electrons and Cl has 7 valence electrons.
 - (a) What is the total number of valence electrons available to form all of the bonds and lone pairs?
 - (b) Count up the number of electrons in bonds and in lone pairs. Does it match your answer to (a)?
- 8. Show the bonding in the following molecules and include any lone pairs. (*Hint*: remember that the number of bonds that O needs to make and that you can only use the electrons that are available).

Model 3: Ionic or Covalent?

Ionic bonding requires a metal and a non-metal. Covalent bonding occurs between non-metals.

Critical thinking questions

1. Predict whether the bonding in the **oxides** following elements will be covalent or ionic:

(a) sodium	(b) magnesium	(c) aluminium
(d) silicon	(e) phosphorus	(f) sulfur

2. Write down the formula of each oxide.