CHEM1001 Worksheet 3 – Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: Ionic Bonding

- 1. +2
- 2. -2
- 3. -3.
- 4. Iodine 7 valence electrons so gains 1 electron to form I⁻. Sodium – 1 valence electron so loses 1 electron to form Na⁺. Oxygen – 6 valence electrons so gains 2 electrons to form O²⁻. Aluminium – 3 valence so loses 3 electrons to form Al³⁺. Nitrogen – 5 valence electrons so gains 3 electrons to form N³⁻. Sulfur – 6 valence electrons so gains 2 electrons to form S²⁻. Bromine – 7 valence electrons so gains 1 electron to form Br⁻. Magnesium – 2 valence electrons so loses 2 electrons to form Mg²⁺.
- 5. Sodium: sodium iodide NaI, sodium oxide Na₂O, sodium nitride Na₃N, sodium sulfide Na₂S, sodium bromide NaBr

Aluminium: aluminium iodide AlI₃, aluminium oxide Al₂O₃, aluminium nitride AlN, aluminium sulfide Al₂S₃, aluminium bromide AlBr₃.

Magnesium: magnesium iodide MgI₂, magnesium oxide MgO, magnesium nitride Mg₃N₂, magnesium sulfide MgS, magnesium bromide MgBr₂.

6.	(i)	NaOH	(ii)	NaNO ₃	(iii)	Na_2SO_4	(iv)	Na ₃ PO ₄
	(v)	Mg(OH) ₂	(vi)	$Mg(NO_3)_2$	(vii)	NH4OH	(viii)	$(NH_4)_2SO_4$

Model 2: Covalent bonding

1. Bonding = red. Non-bonding = blue.

- 2. Hydrogen = 1, carbon = 4, nitrogen = 3, oxygen = 2, fluorine = 1, silicon = 4, phosphorus = 3, sulfur = 2, chlorine = 1
- 3. Hydrogen = 1, carbon = 4, nitrogen = 3, oxygen = 2, fluorine = 1, silicon = 4, phosphorus = 3, sulfur = 2, chlorine = 1
- 4. Each atom has 8 valence electrons.
- 5. See below.

- 6. S has 10 valence electrons in SCl₄ from 4 bonds and 1 lone pair.
 S has 12 valence electrons in H₂SO₄ from 6 bonds (2 double bonds and 2 single bonds).
- 7. (a) Total = $6(S) + 4 \times 7(Cl) = 34$.
- 8. (b) Total = 4×2 (S-Cl bonds) + $4 \times 3 \times 2$ (Cl lone pairs) + 2 (S lone pair) = 34. Yes, the totals match, as they must. The molecule must use all the electrons available: no more or less.
- 9. See below.

Model 3: Ionic or Covalent?

1.	(a)	Ionic	(b)	Ionic	(c)	Ionic
	(d)	Covalent	(e)	Covalent	(f)	Covalent

- 2. (a) Na_2O (b) MgO (c) Al_2O_3
 - (d) SiO₂
 - (e) P_2O_3 (P_2O_5 is also possible in which P has expanded its octet. Actually this oxide is more common for phosphrous.)
 - (f) SO $(SO_2 \text{ and } SO_3 \text{ are also possible in which S has expanded its octet. Actually these oxides are the common ones for sulfur.)$