CHEM1002 Worksheet 9 - Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: A Solution Containing a Weak Acid

1. $\mathrm{a}: \mathrm{pH}=2.23$
b: $\quad \mathrm{pH}=2.38$
c: $\quad \mathrm{pH}=2.53$
d: $\quad \mathrm{pH}=2.68$
2. The major species present are $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}(1)$. The ionisation of the weak acid is very small and there is very little $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$.

Model 2: Buffer solutions

3. Use the Henderson-Hasselbalch equation to calculate the pH .

$$
\mathrm{pH}=4.76+\log (0.100 / 0.400)=4.76+(-0.60)=4.16
$$

4. All of the added strong base reacts with $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ to form more $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$. The concentration of the weak acid will be 0.250 M and that of the conjugate base will be 0.250 M . Add these concentrations into the Henderson-Hasselbalch equation.
$\mathrm{pH}=4.76+\log (0.250 / 0.250)=4.76+0.00=4.76$

The pH changes by 0.60 and the final value is $\mathrm{pH}=4.76$.
5. You need to use the Henderson-Hasselbalch equation to determine the ratio of weak acid to conjugate base to prepare a buffer at the required pH .
$5.00=4.76+0.24$
$\log ([$ base $] /[$ acid $])=0.24$
[base] $/[$ acid $]=10^{0.24}=1.74=1.7(2$ sig. fig. $)$

The required ratio of conjugate base to weak acid is $1.7: 1$.

