CHEM1002 Worksheet 11 - Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: The Unit Cell

1. Number of atoms $=8 \times 1 / 8=1$.
2. Number of atoms $=8 \times 1 / 8($ atoms on corners $)+1($ atom at centre $)=2$.
3. Number of atoms $=8 \times 1 / 8($ atoms on corners $)+6 \times 1 / 2($ atoms on faces $)=4$.

Model 2: The Unit Cell and Stoichiometry

1. (a) Number of Cl atoms $=8 \times 1 / 8$ (atoms on corners) $+6 \times 1 / 2($ atoms on faces $)=4$.
(b) Number of Na atoms $=12 \times 1 / 4($ atoms on edges $)+1($ atom at centre $)=4$.
(c) Cation : anion $=4: 4$ or $1: 1$. This is consistent with the formula NaCl .
2. (a) Number of Ti atoms $=1$ (atom at centre).
(b) Number of Ca atoms $=8 \times 1 / 8$ (atoms on corners) $=1$
(c) \quad Number of O atoms $=6 \times 1 / 2($ atoms on edges $)=3$.
(d) The formula is $\mathrm{Ca}_{1} \mathrm{Ti}_{1} \mathrm{O}_{3}$ or CaTiO_{3}.

Model 3: The solubility product

1. (a) $\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) ; K_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]$
(b) $\quad \mathrm{PbCl}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) ; K_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}(\mathrm{aq})\right]\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]^{2}$
2. (a) $\left[\mathrm{Pb}^{2+}(\mathrm{aq})\right]=x$ and $\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]=2 x$.
(b) $\left.\quad K_{\mathrm{sp}}=\mathrm{Pb}^{2+}(\mathrm{aq})\right]\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]^{2}=(x)(2 x)^{2}=4 x^{3}$

If $4 x^{3}=1.6 \times 10^{-5}$, then $x=1.59 \times 10^{-2}$.
$\left[\mathrm{Pb}^{2+}(\mathrm{aq})\right]=x=1.59 \times 10^{-2} \mathrm{M}$ and $\left[\mathrm{Cl}^{-}(\mathrm{aq})\right]=2 x=3.17 \times 10^{-2} \mathrm{M}$
3. \quad Molar solubility $=\left(K_{\text {sp }} / 27\right)^{1 / 4}$

Model 4: To dissolve or not to dissolve?

1.

(a) $\left[\mathrm{Mg}^{2+}(\mathrm{aq})\right]=0.050 \mathrm{M}$ and $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=0.060 \mathrm{M}$
(b) $\quad Q_{\mathrm{sp}}=\left[\mathrm{Mg}^{2+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]^{2}=(0.050)(0.060)^{2}=1.8 \times 10^{-4}$
(c) $\quad Q_{\text {sp }}>K_{\text {sp }} \mathrm{so} \mathrm{Mg}(\mathrm{OH})_{2}$ (s) precipitate forms.

