## CHEM1002: Worksheet 8: Introduction to Acids and Bases

## Model 1: pH

Water is able to act as both an acid and a base and it is possible for water to react with itself in an acid-base reaction called the autoprotolysis or autoionization of water:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The equilibrium constant for this reaction $K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$. At $25^{\circ} \mathrm{C}, K_{\mathrm{w}}=1.0 \times 10^{-14}$. Several definitions have proven to be useful:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right], \quad \mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}(\mathrm{aq})\right] \quad \mathrm{p} K_{\mathrm{w}}=-\log _{10} K_{\mathrm{w}}
$$

## Critical thinking questions

1. During the course of a titration, a student measures the pH several times. What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]$ for each pH value below? Use scientific notation in your answers.

| pH | 0.50 | 1.50 | 2.50 | 3.50 | 4.50 | 5.50 | 5.75 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]$ |  |  |  |  |  |  |  |

2. Look at the numbers you calculated in Q1. What do you notice about how the part of the number before and after the decimal point in pH affects the value of $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]$ ?
3. What is the numerical value of $\mathrm{p} K_{\mathrm{w}}$ at $25^{\circ} \mathrm{C}$ ?

## Model 2: Strong and Weak Acids

A strong acid is one that is essentially $100 \%$ dissociated in water: if 0.1 mole of the acid is added to enough water to make a 1.0 L solution, the solution will have $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]=0.1 \mathrm{M}$ and will be $\mathrm{pH}=1$.

A weak acid is one that is significantly less than $100 \%$ dissociated in water: if 0.1 mole of the acid is added to enough water to make a 1.0 L solution, the solution will have $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]<0.1 \mathrm{M}$ and will be $\mathrm{pH}>1$.

When an acid HA is placed in water, $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ ions are produced according to the reaction:

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}(\mathrm{aq})
$$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]\left[\mathrm{A}^{-}(\mathrm{aq})\right]}{[\mathrm{HA}(\mathrm{aq})]}
$$

## Critical thinking questions

1. What are the major species present in a solution of a strong acid like HCl ?
2. What are the major species present in a solution of a weak acid like $\mathrm{CH}_{3} \mathrm{COOH}$ ?
3. Under what pH conditions would $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$ be the dominant species in a solution of $\mathrm{CH}_{3} \mathrm{COOH}$ ?
4. Write down the equilibrium expression, $K_{\mathrm{a}}$, for $\mathrm{CH}_{3} \mathrm{COOH}$.
5. What are the major species present in a solution of a weak base like $\mathrm{CH}_{3} \mathrm{NH}_{2}$ ?
6. Under what pH conditions would $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})$ be the dominant species?
7. The extent of ionization of a drug helps determine how it is distributed in the body because ions are less likely to cross cell membranes than uncharged molecules. Are the two drugs below likely to be absorbed in (i) the acidic environment of the stomach or (ii) the basic environment of the intestine?

aspirin

amphetamine

## Model 3: Conjugate Pairs

Certain pairs of molecules are related through their acid and base properties. These pairs are described as a conjugate acid-base pair. They differ by a single proton. A base has one less proton than its conjugate acid. An acid has one more proton than its conjugate base.

| Acid | Base |
| :---: | :---: |
| $\mathrm{H}_{2} \mathrm{CO}_{3}$ | $\mathrm{HCO}_{3}$ |
| $\mathrm{HCO}_{3}$ | $\mathrm{CO}_{3}{ }^{2}$ |
| $\mathrm{H}_{3} \mathrm{O}^{+}$ | $\mathrm{H}_{2} \mathrm{O}$ |
| $\mathrm{H}_{2} \mathrm{~S}$ | HS |
|  |  |

## Critical thinking questions

1. (a) What is the conjugate base of $\mathrm{H}_{2} \mathrm{O}$ ?
(b) What is the conjugate acid of $\mathrm{H}_{2} \mathrm{O}$ ?
2. Write the formulae of the conjugate bases of the following acids:
(a) $\mathrm{CH}_{3} \mathrm{COOH}$
(b) $\mathrm{NH}_{4}^{+}$
(c)

3. Write the formulae of the conjugate acids of the following bases:
(a) $\mathrm{H}_{2} \mathrm{~S}$
(b) $\mathrm{HS}^{-}$
(c) $\mathrm{S}^{2-}$

- Hydrochloric acid in a healthy human stomach leads to a pH in the range 1-2. What is the concentration of hydrochloric acid in the stomach?
$\square$
- The structure of methyl 4-aminobenzoate, (E), is given below.
(E)


Give the structure(s) of all organic products formed when compound $(\mathbf{E})$ is treated with the following reagents. If no reaction occurs, write "NO REACTION".

| cold $\mathrm{HCl}(1 \mathrm{M})$ |  |
| :---: | :--- |
| hot $\mathrm{NaOH}(4 \mathrm{M})$ |  |
| hot $\mathrm{HCl}(4 \mathrm{M})$ |  |

