1. What is the electronic configuration of Cr^{2+} ?
a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$
b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$
c) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$
d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{4}$
e) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{3}$
2. Which nuclide is needed to balance the following nuclear reaction?

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow ?+{ }_{39}^{96} \mathrm{Y}+3{ }_{0}^{1} \mathrm{n}
$$

a) ${ }_{53}^{139} \mathrm{I}$
b) ${ }_{53}^{138} \mathrm{I}$
c) ${ }_{53}^{137} \mathrm{I}$
d) ${ }_{53}^{136} \mathrm{I}$
e) ${ }_{53}^{135} \mathrm{I}$
3. Which of the following electron excitations of the hydrogen atom requires light of the shortest wavelength?
a) $n=2$ to $n=3$
b) $n=3$ to $n=4$
c) $n=4$ to $n=20$
d) $n=5$ to $n=100$
e) $n=4$ to $n=1000$
4. Which one of the following sets of quantum numbers is valid?

| | n | l | m_{1} |
| :--- | :--- | :--- | :--- |$m_{\text {s }}$

b) $\begin{array}{lllll}1 & 1 & 0 & -1 / 2\end{array}$
c) $\begin{array}{lllll} & 3 & 3 & -2 & +1 / 2\end{array}$
d) $\begin{array}{llll}1 & 1 & 1 & 0\end{array}$
e) $\begin{array}{llll}5 & 4 & 3 & +1 / 2\end{array}$
5. What is the hybridization of the atoms indicated in the following molecule.

a) $\mathrm{A}=s p^{2} \quad \mathrm{~B}=s p^{2} \quad \mathrm{C}=s p^{2}$
b) $\mathrm{A}=s p^{2} \quad \mathrm{~B}=s p^{3} \quad \mathrm{C}=s p^{2}$
c) $\mathrm{A}=s p^{3} \quad \mathrm{~B}=s p^{2} \quad \mathrm{C}=s p$
d) $\mathrm{A}=s p_{3}^{3} \quad \mathrm{~B}=s p^{3} \quad \mathrm{C}=s p^{2}$
e) $\mathrm{A}=s p^{3} \quad \mathrm{~B}=s p^{2} \quad \mathrm{C}=s p^{2}$
6. The thermal decomposition of potassium chlorate is a convenient preparation for small amounts of oxygen gas in the laboratory. The reaction is:

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

What mass of potassium chlorate would produce a theoretical yield of 10.00 g of oxygen?
a) 25.5 g
b) 30.4 g
c) 38.3 g
d) 51.1 g
e) 57.5 g
7. What amount (in mol) of $\mathrm{AlPO}_{4}(\mathrm{~s})$ precipitates when 0.060 M aluminium nitrate solution $(100 \mathrm{~mL})$ is added to 0.080 M potassium phosphate solution (50 mL)?
a) 0.0060
b) 0.0060
c) 0.0040
d) 0.0020
e) 0.040
8. Place the following atoms in order of increasing atomic radius: $\mathrm{Al}, \mathrm{O}, \mathrm{P}, \mathrm{Cl}, \mathrm{Ne}$
a) $\mathrm{O}<\mathrm{Ne}<\mathrm{Al}<\mathrm{P}<\mathrm{Cl}$
b) $\mathrm{Ne}<\mathrm{Cl}<\mathrm{O}<\mathrm{P}<\mathrm{Al}$
c) $\mathrm{Ne}<\mathrm{O}<\mathrm{Cl}<\mathrm{P}<\mathrm{Al}$
d) $\mathrm{O}<\mathrm{Ne}<\mathrm{Cl}<\mathrm{P}<\mathrm{Al}$
e) $\mathrm{Al}<\mathrm{P}<\mathrm{O}<\mathrm{Cl}<\mathrm{Ne}$
9. What is the molecular geometry of the $\mathrm{SO}_{4}{ }^{2-}$ ion?
a) trigonal planar
b) trigonal bipyramidal
c) octahedral
d) tetrahedral
e) T-shaped
10. Which of the following is not an example of a conjugate acid-base pair?
a) $\mathrm{HCN}, \mathrm{CN}^{-}$
b) $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{PO}_{4}{ }^{3-}$
c) $\mathrm{HClO}_{3}, \mathrm{ClO}_{3}^{-}$
d) $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}_{2} \mathrm{O}$
e) $\mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3}{ }^{2-}$

Correct answers: $\quad 1 \mathrm{D}, 2 \mathrm{C}, 3 \mathrm{~A}, 4 \mathrm{E}, 5 \mathrm{D}, 6 \mathrm{~A}, 7 \mathrm{C}, ~ 8 \mathrm{C}, ~ 9 \mathrm{D}, 10 \mathrm{~B}$

1. What is the electronic configuration of Mn^{4+} ?
a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{1}$
b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{2}$
c) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}$
d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$
e) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{9}$
2. Which nuclide is needed to balance the following nuclear reaction?

$$
{ }_{92}^{233} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow ?+{ }_{42}^{101} \mathrm{Mo}+3{ }_{0}^{1} \mathrm{n}
$$

a) ${ }_{50}^{132} \mathrm{Sn}$
b) ${ }_{50}^{131} \mathrm{Sn}$
c) ${ }_{50}^{130} \mathrm{Sn}$
d) ${ }_{50}^{129} \mathrm{Sn}$
e) ${ }_{50}^{128} \mathrm{Sn}$
3. Which of the following electron excitations of the hydrogen atom requires light of the longest wavelength?
a) $n=2$ to $n=3$
b) $n=3$ to $n=4$
c) $n=4$ to $n=20$
d) $n=5$ to $n=100$
e) $n=4$ to $n=1000$
4. Which one of the following sets of quantum numbers is valid?

	n	l	m_{1}	m_{s}
a)	4	4	3	$+1 / 2$
b)	2	1	0	$-1 / 2$
c)	3	2	-2	+1
d)	1	1	1	0
e)	3	1	0	0

5. What is the hybridization of the atoms indicated in the following molecule.

A. $\mathrm{A}=s p \quad \mathrm{~B}=s p^{3} \quad \mathrm{C}=s p^{2}$
B. $\mathrm{A}=s p \quad \mathrm{~B}=s p^{3} \quad \mathrm{C}=s p^{3}$
C. $\mathrm{A}=s p^{2} \quad \mathrm{~B}=s p_{3}^{3} \quad \mathrm{C}=s p^{2}$
D. $\mathrm{A}=s p^{2} \quad \mathrm{~B}=s p^{3} \quad \mathrm{C}=s p^{3}$
E. $\mathrm{A}=s p^{3} \quad \mathrm{~B}=s p^{2} \quad \mathrm{C}=s p^{3}$
6. Hydrogen bromide reacts with manganese dioxide according to the following equation.

$$
\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{HBr}(\mathrm{~g}) \rightarrow \mathrm{MnBr}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

What mass of bromine can be produced from 6.5 g of hydrogen bromide?
a) 12.8 g
b) 6.42 g
c) 3.21 g
d) 1.60 g
e) 0.802 g
7. What amount (in mol) of $\mathrm{Cr}_{2} \mathrm{~S}_{3}(\mathrm{~s})$ precipitates when 0.040 M chromium(III) chloride solution (100 mL) is added to 0.030 M sodium sulfide solution $(50 \mathrm{~mL})$?
a) 0.0005
b) 0.0015
c) 0.0020
d) 0.0030
e) 0.0045
8. In which of the following are the atoms arranged in order of INCREASING first ionisation energy?
a) $\mathrm{Ne}, \mathrm{F}, \mathrm{O}, \mathrm{C}$
b) $\mathrm{Te}, \mathrm{Se}, \mathrm{S}, \mathrm{O}$
c) $\mathrm{Ca}, \mathrm{K}, \mathrm{Cl}, \mathrm{Ar}$
d) $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$
e) $\mathrm{N}, \mathrm{P}, \mathrm{K}, \mathrm{Rb}$
9. What is the molecular geometry of the BeF_{2} molecule?
a) trigonal planar
b) tetrahedral
c) trigonal pyramidal
d) T-shaped
e) linear
10. Which of the following is not an example of a conjugate acid-base pair?
a) $\mathrm{HSO}_{3}{ }^{-}, \mathrm{SO}_{3}{ }^{2-}$
b) $\mathrm{HCN}, \mathrm{CN}^{-}$
c) $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
d) $\mathrm{O}, \mathrm{OH}^{-}$
e) $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}_{2} \mathrm{O}$

Correct answers:
$1 \mathrm{C}, 2 \mathrm{C}, 3 \mathrm{D}, 4 \mathrm{~B}, 5 \mathrm{~B}, 6 \mathrm{C}, 7 \mathrm{~A}, 8 \mathrm{~B}, 9 \mathrm{E}, 10 \mathrm{D}$

