WORKSHOP ON STOICHIOMETRY worked answers to postwork questions

Q1. Write the equation that relates amount of a substance to mass.

Amount of substance (in mol) = $\frac{\text{mass of substance}}{\text{formula weight}}$ or $n = \frac{m}{M}$

Q2. Calculate the mass of 1.87 mol of sulfur trioxide.

Molecular weight of $SO_3 = 32.07$ (S) + (3 × 16.00 (O)) = 80.07

Mass of 1.87 mol of $SO_3 = 1.87 \times 80.07 = 149.73 = 150$ g (3 significant figures)

Q3. Calculate the amount (in mol) present in 200.0 g of silicon tetrachloride.

Molecular weight of $SiCl_4 = 28.09 + (4 \times 35.45) = 169.89$

 $n = \frac{m}{M} = \frac{200.0}{169.89} = 1.1772 = 1.177$ (4 significant figures)

Q4. Calculate the mass of 2.00×10^{20} molecules of water.

Molecular weight of H₂O = (2 × 1.008 (H)) + 16.00 (O) = 18.016

$$n = \frac{number \text{ of atoms}}{A \text{ vogadro's number}} = \frac{2.00 \times 10^{20}}{6.022 \times 10^{23}} \text{ mol}$$

$$m = n \times M = (\frac{2.00 \times 10^{20}}{6.022 \times 10^{23}}) \times 18.016 = 5.9834 \times 10^{-3} = 5.98 \times 10^{-3} \text{ g (3 significant figures)}$$

Q5. Calculate the volume (in L) present in 5.45×10^{22} atoms of helium at STP.

$$n = \frac{number of atoms}{Avogadro's number} = \frac{5.45 \times 10^{22}}{6.022 \times 10^{23}} mol$$
Volume occupied = n × 22.4 = $\frac{5.45 \times 10^{22}}{6.022 \times 10^{23}}$ × 22.4 = 2.027 = 2.03 L (3 significant figures)

continues on the next page

Q6. Calculate the relative atomic mass of a natural sample of zinc, which contains the isotopes with masses and abundances given:

isotope	atomic weight	abundance	isotope	atomic weight	abundance
⁶⁴ Zn	63.929	48.6%	⁶⁸ Zn	67.925	18.8%
⁶⁶ Zn	65.926	27.9%	⁷⁰ Zn	69.925	0.6%
⁶⁷ Zn	66.927	4.1%			

atomic weight =
$$\left(63.929 \times \frac{48.6}{100}\right) + \left(65.926 \times \frac{27.9}{100}\right) + \left(66.927 \times \frac{4.1}{100}\right) + \left(67.925 \times \frac{18.8}{100}\right) + \left(69.925 \times \frac{0.6}{100}\right) = 65.3963 = 65.4 (3 \text{ significant figures})$$

Q7. An iron supplement is used to treat anaemia and 50 mg (*i.e.* 50×10^{-3} g) of Fe²⁺ is required per tablet. If the iron compound used in the tablet is FeSO₄·7H₂O, what mass of this compound would be required per tablet to provide the desired amount of Fe²⁺?

Formula weight of FeSO₄·7H₂O:
55.85 (Fe) + 32.07 (S) + (4 × 16.00 (O)) + 7 × (2 × 1.008 (H) + 16.00 (O)) = 278.032
50 mg of Fe =
$$\frac{\text{mass}(\text{in g})}{\text{atomic mass}(\text{in g mol}^{-1})} = \frac{50 \times 10^{-3}}{55.85}$$
 mol
Mass of FeSO₄·7H₂O = number of moles × formula mass
 $= \frac{50 \times 10^{-3}}{55.85} \times 278.032 = 0.24891 = 0.25$ g (2 significant figures)

Q8. Write the equation that relates concentration of a solution to amount of solute and volume of solution.

concentration (in M) =
$$\frac{\text{number of moles of solute(in mol)}}{\text{volume of solute(in L)}}$$

Q9. Write the net ionic equation for the reaction that occurs when a solution of barium nitrate is mixed with a solution of sodium sulfate. A white precipitate of barium sulfate forms.

 $Ba^{2+}(aq) + SO_4^{2-}(aq) → BaSO_4(s)$

continues on the next page

- Q10. One of the components of petrol is octane, C_8H_{18} .
 - (i) Write the balanced equation for the complete combustion of octane to form carbon dioxide gas and liquid water.

$$C_8H_{18}(l) + \frac{25}{2}O_2(g) \rightarrow 8CO_2(g) + 9H_2O(l)$$

(ii) What amount (in mol) of carbon dioxide is formed when 5.5 mol (1 L) of petrol is burnt?

: 5.5 mol of $C_8H_{18}(l)$ produces $8 \times 5.5 = 44$ mol of $CO_2(g)$

(iii) What volume of carbon dioxide would this represent at STP?

Volume occupied = $44 \times 22.4 = 985.6 = 9.9 \times 10^2$ L (2 significant figures)

Q11. Hydrogen iodide gas (5.0 L at STP) is dissolved in water and the volume made up to 1.0 L. What is the molarity of the solution?

Amount of HI =
$$\frac{\text{volume}(\text{in L})}{22.4 \text{ L}} = \frac{5.0}{22.4} = 0.2232 \text{ mol}$$

Molarity of solution = $\frac{\text{number of moles}(\text{in mol})}{\text{volume}(\text{in L})} = \frac{0.2232}{1.0} = 0.22 \text{ M} (2 \text{ significant figures})$

Q12. What volume of 0.200 M hydrochloric acid would be needed to react completely with a mixture of 0.500 g of sodium hydroxide and 0.800 g of potassium hydroxide?

Formula weight of NaOH = 22.99 (Na) + 16.00 (O) + 1.008 (H) = 39.998 Formula weight of KOH = 39.10 (K) + 16.00 (O) + 1.008 (H) = 56.108 HCl + MOH \rightarrow H₂O + MCl (M = K or Na) total amount of MOH = $\frac{\text{mass of NaOH (in g)}}{\text{formula mass of NaOH (in g mol^{-1})}} + \frac{\text{mass of KOH (in g)}}{\text{formula mass of KOH (in g mol^{-1})}}$ = $\left(\frac{0.500}{39.998}\right) + \left(\frac{0.800}{56.108}\right) = 0.02676 \text{ mol}$ Therefore 0.02676 mol of HCl is required. Volume (in L) = $\frac{\text{number of moles (in mol)}}{\text{concentration (in M)}} = \frac{0.02676}{0.200} = 0.1338 \text{ L}$

= 134 mL (3 significant figures)

- Q10. A solution was prepared by dissolving nickel (II) nitrate-6-water, Ni(NO₃)₂·6H₂O, (29.1 g) in some water and making the volume up to 1.00 L with water. Assuming complete dissociation of the solid into ions, calculate:
 - (i) The amount (in mol) of nickel(II) ions in 100 mL of this solution.

Formula weight of Ni(NO₃)₂·6H₂O: 58.69 (Ni) + 2 × (14.01 (N) + 3 × 16.00 (O)) + 6 × (2 × 1.008 (H) + 16.00 (O)) = 290.806 Amount of Ni(NO₃)₂·6H₂O = $\frac{\text{mass}(\text{in g})}{\text{formula mass}(\text{in g mol}^{-1})} = \frac{29.1}{290.806}$ = 0.100 mol (3 significant figures) Concentration of solution = $\frac{\text{number of moles}(\text{in mol})}{\text{volume}(\text{in L})} = \frac{0.100}{1.00 \text{ L}} = 0.100 \text{ M}$ Each Ni(NO₃)₂·6H₂O dissociates to give *one* Ni²⁺(aq) ion. Amount of Ni²⁺ ions in 100 mL = concentration (in M) × volume (in L) = $0.100 \times \frac{100}{1000}$ = 0.0100 mol

(ii) The amount (in mol) of nitrate ions in 100 mL of this solution.

Each Ni(NO₃)₂·6H₂O dissociates to give *two* NO₃²⁻ (aq) ions.

Amount of NO_3^{2-} ions in 100 mL = concentration (in M) × volume (in L)

 $= 2 \times 0.100 \times \frac{100}{1000}$ = 0.0200 mol

(iii) The number of individual nickel(II) ions in 100 mL of solution.

Number of Ni²⁺ ions = number of moles × Avogadro's number = $0.0100 \times (6.022 \times 10^{23}) = 6.022 \times 10^{21}$ Q14. What volume of 0.010 M silver nitrate solution will exactly react with 20 mL of 0.0080 M sodium chloride solution?

AgNO₃ + NaCl \rightarrow AgCl + NaNO₃ Amount of NaCl = volume (in L) × concentration (in M) = $\frac{20}{1000}$ × 0.080 mol \therefore Amount of AgNO₃ required = 0.0080 × 0.020 Volume of AgNO₃ required = $\frac{\text{number of moles (in mol)}}{\text{concentration (in M)}}$ = $\frac{0.0080}{0.010}$ = 0.016L=16mL (2 significant figures)