WORKSHOP ON STOICHIOMETRY worked answers to postwork questions

Q1. Write the equation that relates amount of a substance to mass.
Amount of substance $($ in mol $)=\frac{\text { mass of substance }}{\text { formula weight }}$ or $\mathbf{n}=\frac{m}{M}$

Q2. Calculate the mass of 1.87 mol of sulfur trioxide.
Molecular weight of $\mathrm{SO}_{3}=\mathbf{3 2 . 0 7}(\mathrm{S})+(\mathbf{3} \times 16.00(\mathrm{O}))=\mathbf{8 0 . 0 7}$
Mass of 1.87 mol of $\mathrm{SO}_{3}=1.87 \times \mathbf{8 0 . 0 7}=149.73=150 \mathrm{~g}$ (3 significant figures)

Q3. Calculate the amount (in mol) present in 200.0 g of silicon tetrachloride.
Molecular weight of $\mathrm{SiCl}_{4}=28.09+(4 \times 35.45)=169.89$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{\mathbf{2 0 0 . 0}}{169.89}=\mathbf{1 . 1 7 7 2}=1.177$ (4 significant figures)

Q4. Calculate the mass of 2.00×10^{20} molecules of water.
Molecular weight of $\mathrm{H}_{2} \mathrm{O}=(2 \times 1.008(\mathrm{H}))+16.00(\mathrm{O})=18.016$
$\mathrm{n}=\frac{\text { number of atoms }}{\text { Avogadro' s number }}=\frac{2.00 \times 10^{20}}{6.022 \times 10^{23}} \mathrm{~mol}$
$\mathrm{m}=\mathrm{n} \times \mathrm{M}=\left(\frac{2.00 \times 10^{20}}{6.022 \times 10^{23}}\right) \times 18.016=5.9834 \times 10^{-3}=5.98 \times 10^{-3} \mathrm{~g}(3$ significant figures $)$

Q5. Calculate the volume (in L) present in 5.45×10^{22} atoms of helium at STP.

$$
\begin{aligned}
& \mathrm{n}=\frac{\text { number of atoms }}{\text { Avogadro' s number }}=\frac{5.45 \times 10^{22}}{6.022 \times 10^{23}} \mathrm{~mol} \\
& \text { Volume occupied }=\mathrm{n} \times 22.4=\frac{5.45 \times 10^{22}}{6.022 \times 10^{23}} \times 22.4=2.027=2.03 \mathrm{~L}(3 \text { significant figures })
\end{aligned}
$$

Q6. Calculate the relative atomic mass of a natural sample of zinc, which contains the isotopes with masses and abundances given:

isotope	atomic weight	abundance	isotope	atomic weight	abundance
${ }^{64} \mathrm{Zn}$	63.929	48.6%	${ }^{68} \mathrm{Zn}$	67.925	18.8%
${ }^{66} \mathrm{Zn}$	65.926	27.9%	${ }^{70} \mathrm{Zn}$	69.925	0.6%
${ }^{67} \mathrm{Zn}$	66.927	4.1%			

$$
\begin{aligned}
\text { atomic weight } & =\left(63.929 \times \frac{48.6}{100}\right)+\left(65.926 \times \frac{27.9}{100}\right)+\left(66.927 \times \frac{4.1}{100}\right) \\
& +\left(67.925 \times \frac{18.8}{100}\right)+\left(69.925 \times \frac{0.6}{100}\right)=65.3963=65.4(3 \text { significant figures })
\end{aligned}
$$

Q7. An iron supplement is used to treat anaemia and 50 mg (i.e. $50 \times 10^{-3} \mathrm{~g}$) of Fe^{2+} is required per tablet. If the iron compound used in the tablet is $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, what mass of this compound would be required per tablet to provide the desired amount of Fe^{2+} ?

Formula weight of $\mathrm{FeSO}_{4} \cdot \mathbf{7 H}_{2} \mathrm{O}$:

$$
55.85(\mathrm{Fe})+32.07(\mathrm{~S})+(4 \times 16.00(\mathrm{O}))+7 \times(2 \times 1.008(\mathrm{H})+16.00(\mathrm{O}))=278.032
$$

50 mg of $\left.\mathrm{Fe}=\frac{\text { mass }(\mathrm{ing})}{\text { atomic mass }(\text { ing mol }}{ }^{-1}\right)=\frac{50 \times 10^{-3}}{55.85} \mathrm{~mol}$
Mass of $\mathrm{FeSO}_{4} \cdot 7 \mathbf{H}_{2} \mathrm{O}=$ number of moles \times formula mass

$$
=\frac{50 \times 10^{-3}}{55.85} \times 278.032=0.24891=0.25 \mathrm{~g}(2 \text { significant figures })
$$

Q8. Write the equation that relates concentration of a solution to amount of solute and volume of solution.

```
concentration (in M)=\frac{\mathrm{ number of moles of solute (in mol)}}{\mathrm{ volume of solute (inL)}}=\mp@code{(in)}
```

Q9. Write the net ionic equation for the reaction that occurs when a solution of barium nitrate is mixed with a solution of sodium sulfate. A white precipitate of barium sulfate forms.
$\mathrm{Ba}^{2+}(\mathbf{a q})+\mathrm{SO}_{4}{ }^{2-}(\mathbf{a q}) \rightarrow \mathrm{BaSO}_{4}(\mathbf{s})$

Q10. One of the components of petrol is octane, $\mathrm{C}_{8} \mathrm{H}_{18}$.
(i) Write the balanced equation for the complete combustion of octane to form carbon dioxide gas and liquid water.
$\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+\frac{25}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+9 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(ii) What amount (in mol) of carbon dioxide is formed when $5.5 \mathrm{~mol}(1 \mathrm{~L})$ of petrol is burnt?

1 mol of $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})$ produces 8 mol of $\mathrm{CO}_{2}(\mathrm{~g})$
$\therefore 5.5 \mathrm{~mol}$ of $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})$ produces $8 \times 5.5=44 \mathrm{~mol}$ of $\mathrm{CO}_{2}(\mathrm{~g})$
(iii) What volume of carbon dioxide would this represent at STP?

Volume occupied $=44 \times 22.4=985.6=9.9 \times 10^{2} \mathrm{~L}(2$ significant figures $)$

Q11. Hydrogen iodide gas (5.0 L at STP) is dissolved in water and the volume made up to 1.0 L . What is the molarity of the solution?

Amount of $\mathrm{HI}=\frac{\text { volume }(\text { in L })}{22.4 \mathrm{~L}}=\frac{5.0}{22.4}=0.2232 \mathrm{~mol}$

Molarity of solution $=\frac{\text { number of moles }(\text { in mol })}{\text { volume }(\text { in } L)}=\frac{0.2232}{1.0}=0.22 \mathrm{M}(2$ significant figures $)$

Q12. What volume of 0.200 M hydrochloric acid would be needed to react completely with a mixture of 0.500 g of sodium hydroxide and 0.800 g of potassium hydroxide?

Q10. A solution was prepared by dissolving nickel (II) nitrate-6-water, $\mathrm{Ni}^{\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \text {, }(29.1 \mathrm{~g}) \text { in }}$ some water and making the volume up to 1.00 L with water. Assuming complete dissociation of the solid into ions, calculate:
(i) The amount (in mol) of nickel(II) ions in 100 mL of this solution.

Formula weight of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathbf{6} \mathrm{H}_{2} \mathrm{O}$:
$58.69(\mathrm{Ni})+2 \times(14.01(\mathrm{~N})+3 \times 16.00(\mathrm{O}))+6 \times(2 \times 1.008(\mathrm{H})+16.00(\mathrm{O}))=290.806$
Amount of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=\frac{\text { mass }(\text { in g) }}{\text { formula mass }\left(\text { in } \mathrm{g} \mathrm{mol}^{-1}\right)}=\frac{29.1}{290.806}$

$$
\text { = } 0.100 \mathrm{~mol} \text { (} 3 \text { significant figures) }
$$

Concentration of solution $=\frac{\text { number of } \text { moles }(\text { in mol })}{\text { volume }(\text { in } L)}=\frac{\mathbf{0 . 1 0 0}}{1.00 \mathrm{~L}}=\mathbf{0 . 1 0 0 \mathrm { M }}$
Each $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathbf{6 H} \mathrm{H}_{2} \mathrm{O}$ dissociates to give one $\mathrm{Ni}^{\mathbf{2 +}}(\mathrm{aq})$ ion.
Amount of Ni^{2+} ions in $100 \mathrm{~mL}=$ concentration (in M) \times volume (in L)

$$
\begin{aligned}
& =0.100 \times \frac{100}{1000} \\
& =0.0100 \mathrm{~mol}
\end{aligned}
$$

(ii) The amount (in mol) of nitrate ions in 100 mL of this solution.

Each $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathbf{6} \mathrm{H}_{2} \mathrm{O}$ dissociates to give two $\mathrm{NO}_{3}{ }^{2-}(\mathrm{aq})$ ions.
Amount of NO_{3}^{2-} ions in $\mathbf{1 0 0} \mathbf{m L}=$ concentration (in M) \times volume (inL)

$$
\begin{aligned}
& =2 \times 0.100 \times \frac{100}{1000} \\
& =0.0200 \mathrm{~mol}
\end{aligned}
$$

(iii) The number of individual nickel(II) ions in 100 mL of solution.

$$
\begin{aligned}
\text { Number of } \mathrm{Ni}^{2+} \text { ions } & =\text { number of moles } \times \text { Avogadro's number } \\
& =0.0100 \times\left(6.022 \times 10^{23}\right)=6.022 \times 10^{21}
\end{aligned}
$$

Q14. What volume of 0.010 M silver nitrate solution will exactly react with 20 mL of 0.0080 M sodium chloride solution?
$\mathrm{AgNO}_{3}+\mathbf{N a C l} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$
Amount of $\mathrm{NaCl}=$ volume $($ in L$) \times$ concentration $($ in $M)=\frac{20}{1000} \times 0.080 \mathrm{~mol}$
\therefore Amount of AgNO_{3} required $=\mathbf{0 . 0 0 8 0} \times \mathbf{0 . 0 2 0}$
Volume of AgNO_{3} required $=\frac{\text { number of moles }(\text { in mol })}{\text { concentration }(\text { in } M)}$

$$
=\frac{0.0080}{0.010}=0.016 \mathrm{~L}=16 \mathrm{~mL}(2 \text { significant figures })
$$

