1.	(a)	S	$1s^2 2s^2 2p^6 3s^2 3p^4$
	(b)	Cu(II)	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^9$
	(c)	V(III)	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^2$
	(d)	Br ⁻	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6$
	(e)	Ca ²⁺	$1s^2 2s^2 2p^6 3s^2 3p^6$

2. The energy of electromagnetic radiation with frequency v is given by:

$$E = hv$$

where $h = 6.626 \times 10^{-34} \,\text{J}$ s (Planck's constant) so the frequency is given by:

$$v = E/h$$

The frequency of the light capable of ionizing hydrogen is therefore:

$$v = (2.18 \times 10^{-18} \text{ J}) / (6.626 \times 10^{-34} \text{ J s}) = 3.29 \times 10^{15} \text{ s}^{-1}$$

The wavelength (λ) , frequency (v) and the speed of light (c) are linked:

$$c = \lambda v$$

This can be rearranged to give:

$$\lambda = c / v$$

The wavelength corresponding to the frequency above is therefore:

$$\lambda = (3.00 \times 10^8 \text{ m s}^{-1}) / (3.29 \times 10^{15} \text{ s}^{-1}) = \underline{9.12 \times 10^{-8} \text{ m (or } 91.2 \text{ nm)}}$$

3.

	$m_{\rm s}$	$m_{\rm l}$	l	n		
Valid – an 'up-spin' electron in a 1s orbital.	1/2	0	0	1	(a)	
Invalid – l can take values from (n -1) to 0. As $n = 4$, $l_{max} = 3$.	- 1/2	3	4	4	(b)	
Valid – an 'up-spin' electron in one of the 2p orbitals	1/2	-1	1	2	(c)	
Invalid – m_s must be + $\frac{1}{2}$ or – $\frac{1}{2}$	0	0	2	3	(d)	

- (e) 2 1 1 $\frac{1}{2}$ Valid an 'up-spin' electron in one of the 2p orbitals
- (f) 6 2 -2 $\frac{1}{2}$ Valid an 'up-spin' electron in one of the 6d orbitals
- 4. (c) chromium, manganese, iron, cobalt, nickel
- 5. (a) ${}^{2}_{1}H + {}^{20}_{10}Ne \rightarrow {}^{18}_{9}F + {}^{4}_{2}He$
 - (b) ${}^{18}_{9}F \rightarrow {}^{18}_{8}O + {}^{0}_{1}e^{+}$
- 6. The waves must be standing waves that are
 - continuous
 - single valued
 - multiples of a whole number of half wavelengths

7.

- 8. Pauli exclusion principle no two electrons can have an identical set of four quantum numbers. i.e. there are a maximum of 2 electrons in any one orbital.
- 9. NaBr sodium bromide

SO₃ sulfur trioxide

N₂O₅ dinitrogen pentoxide

Fe(OH)₂ iron(II) hydroxide

Fe(OH)₃ iron(III) hydroxide

ICl₃ iodine trichloride