1.

(a)
(b)
(c)
(d)
(e)

S	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
$\mathrm{Cu}(\mathrm{II})$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{0} 3 d^{9}$
$\mathrm{~V}(\mathrm{III})$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{0} 3 d^{2}$
Br^{-}	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$
Ca^{2+}	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$

2. The energy of electromagnetic radiation with frequency v is given by:

$$
\mathbf{E}=\mathbf{h v}
$$

where $h=6.626 \times 10^{-34} \mathrm{~J}$ s (Planck's constant) so the frequency is given by:

$$
\mathbf{v}=\mathbf{E} / \mathbf{h}
$$

The frequency of the light capable of ionizing hydrogen is therefore:

$$
v=\left(2.18 \times 10^{-18} \mathrm{~J}\right) /\left(6.626 \times 10^{-34} \mathrm{~J} s\right)=\underline{\mathbf{3 . 2 9} \times 10^{15} \mathrm{~s}^{-1}}
$$

The wavelength (λ), frequency (v) and the speed of light (c) are linked:

$$
c=\lambda v
$$

This can be rearranged to give:

$$
\lambda=\mathbf{c} / \mathbf{v}
$$

The wavelength corresponding to the frequency above is therefore:

$$
\lambda=\left(3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right) /\left(3.29 \times 10^{15} \mathrm{~s}^{-1}\right)=\underline{9.12 \times 10^{-8} \mathrm{~m}(\text { or } 91.2 \mathrm{~nm})}
$$

3.

	n	l	m_{l}	m_{s}	
(a)	1	0	0	$1 / 2$	Valid - an 'up-spin' electron in a 1s orbital.
(b)	4	4	3	$-1 / 2$	Invalid $-l$ can take values from $(n-$ 1) to 0. As $n=4, l_{\text {max }}=3$.
(c)	2	1	-1	$1 / 2$	Valid - an 'up-spin' electron in one of the $2 p$ orbitals
(d)	3	2	0	0	Invalid $-\mathbf{m}_{s}$ must be $+1 / 2$ or $-1 / 2$

(e)	2	1	1	$1 / 2$	Valid - an 'up-spin' electron in one of the 2p orbitals
(f)	6	2	-2	$1 / 2$	Valid - an 'up-spin' electron in one of the $6 d$ orbitals

4. (c) chromium, manganese, iron, cobalt, nickel
5. (a) ${ }_{1}^{2} \mathrm{H}+{ }_{10}^{20} \mathrm{Ne} \rightarrow{ }_{9}^{18} \mathrm{~F}+{ }_{2}^{4} \mathrm{He}$
(b) ${ }_{9}^{18} \mathrm{~F} \rightarrow{ }_{8}^{18} \mathrm{O}+{ }_{1} \mathrm{e}^{+}$
6. The waves must be standing waves that are

- continuous
- single valued
- multiples of a whole number of half wavelengths

7.

8. Pauli exclusion principle - no two electrons can have an identical set of four quantum numbers. i.e. there are a maximum of 2 electrons in any one orbital.
9. NaBr sodium bromide
SO_{3} sulfur trioxide
$\mathrm{N}_{2} \mathrm{O}_{5} \quad$ dinitrogen pentoxide
$\mathrm{Fe}(\mathrm{OH})_{2} \quad$ iron(II) hydroxide
$\mathrm{Fe}(\mathrm{OH})_{3} \quad$ iron(III) hydroxide
$\mathbf{I C l}_{3} \quad$ iodine trichloride

