CHEM1612 Worksheet 3 - Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: Enthalpy ($\Delta_{\mathrm{rxn}} H$) and Entropy ($\Delta_{\mathrm{rxn}} S$) of Reaction

1. $\Delta_{\mathrm{rxn}} H^{\circ}=-57 \mathrm{~kJ} \mathrm{~mol}^{-1} . \Delta_{\mathrm{rxn}} S^{\circ}=-176 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
2. The reaction involves making a $\mathrm{N}-\mathrm{N}$ bond, with no bonds being broken. It is exothermic. The reaction involves the conversion of 2 mol of gas $\rightarrow 1 \mathrm{~mol}$ of gas. The entropy decreases.
3. $\Delta_{\mathrm{rxn}} H^{\circ}=-28.5 \mathrm{~kJ} \mathrm{~mol}^{-1} . \Delta_{\mathrm{rxn}} S^{\circ}=-88 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. These values are exactly half those for reaction A.
4. $\quad \Delta_{\mathrm{rxn}} H^{\circ}=+57 \mathrm{~kJ} \mathrm{~mol}^{-1} . \Delta_{\mathrm{rxn}} S^{\circ}=+176 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. These values are equal to -1 times the values for reaction A . Reaction C involves breaking a $\mathrm{N}-\mathrm{N}$ bond, with no bonds being made. It is endothermic. The reaction involves the conversion of 1 mol of gas $\rightarrow 2 \mathrm{~mol}$ of gas. The entropy increases..
5. $\Delta_{\mathrm{rxn}} H^{\circ}=+28.5 \mathrm{~kJ} \mathrm{~mol}^{-1} . \Delta_{\mathrm{rxn}} S^{\circ}=+88 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.

Model 2: Free Energy of Reaction ($\Delta_{\mathrm{rxn}} G$)

1. Favourable.
2. Unfavourable.
3. Unfavourable.
4. Favourable.
5. The temperature.
6. (a) $\Delta_{\mathrm{rxn}} G^{\circ}=-4550 \mathrm{~J} \mathrm{~mol}^{-1}=-4.55 \mathrm{~kJ} \mathrm{~mol}^{-1}=-5 \mathrm{~kJ} \mathrm{~mol}^{-1}(1 \mathrm{sf})$. Reaction is favourable.
(b) $\quad \Delta_{\mathrm{rxn}} G^{\circ}=+13050 \mathrm{~J} \mathrm{~mol}^{-1}=+13.05 \mathrm{~kJ} \mathrm{~mol}^{-1}=+13 \mathrm{~kJ} \mathrm{~mol}^{-1}(1 \mathrm{sf})$. Reaction is unfavourable.
7. (a) $\Delta_{\mathrm{rxn}} G^{\circ}=+4550 \mathrm{~J} \mathrm{~mol}^{-1}=+4.55 \mathrm{~kJ} \mathrm{~mol}^{-1}=+5 \mathrm{~kJ} \mathrm{~mol}^{-1}(1 \mathrm{sf})$. Reaction is unfavourable.
(b) $\quad \Delta_{\mathrm{rxn}} G^{\circ}=-13050 \mathrm{~J} \mathrm{~mol}^{-1}=-13.05 \mathrm{~kJ} \mathrm{~mol}^{-1}=-13 \mathrm{~kJ} \mathrm{~mol}^{-1}(1 \mathrm{sf})$. Reaction is favourable.
8. An exothermic reaction becomes less favourable as the temperature is increased.
9. An endothermic reaction becomes more favourable as the temperature is increased.
10. $\Delta_{\mathrm{rxn}} H>0$ and $\Delta_{\mathrm{rxn}} S<0$.

Model 3: The Gas Laws

1.

(i) Boyle's Law:

(iii) Avogadro's Hypothesis:

2. As $1.000 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}$ and $22.414 \mathrm{~L}=0.022414 \mathrm{~m}^{3}$,
$R=\frac{P V}{n T}=\frac{\left(1.01325 \times 10^{5} \mathrm{~Pa}\right) \times\left(0.022414 \mathrm{~m}^{3}\right)}{(1.000 \mathrm{~mol}) \times(273.15 \mathrm{~K})}=8.314 \mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

3
(a) 22.414 L corresponds to $0.022414 \mathrm{~m}^{3}$.
(b) $\quad R=\frac{P V}{n T}=\frac{\left(1.01325 \times 10^{5} \mathrm{~Pa}\right) \times\left(0.022414 \mathrm{~m}^{3}\right)}{(1.000 \mathrm{~mol}) \times(273.15 \mathrm{~K})}=8.314 \mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

The units arise directly from the equation: $\left(\mathrm{Pa} \times \mathrm{m}^{3}\right) /(\mathrm{mol} \times \mathrm{K})$.

Model 4: Partial Pressures

1. $\quad P_{N_{2}}=0.80 \times 1.0000 \mathrm{~atm}=0.80 \mathrm{~atm}$

$$
P_{O_{2}}=0.20 \times 1.0000 \mathrm{~atm}=0.20 \mathrm{~atm}
$$

$$
\} \quad P_{\text {total }}=(0.20+0.80) \mathrm{atm}=1.00 \mathrm{~atm}
$$

2. At $15.0 \mathrm{~m}, P=2.50 \mathrm{~atm} . V_{15.0 \mathrm{~m}}=2.40 \mathrm{~L}$.
3. At $30.0 \mathrm{~m}, P=4.00 \mathrm{~atm} . V_{\text {surface }}=20$. L. It will burst.
4. Air caught in a cavity will try to expand as the pressure is reduced during ascent. If trapped, it may cause severe pain or a perforated eardrum in the ear or very severe toothache in a tooth.
5. $\quad \mathrm{P}_{35^{\circ} \mathrm{C}}=209 \mathrm{~atm}$.
6. The increasing pressure leads to an increase in the density, $\rho=\frac{M P}{R T}$. More air is held in the same volume so the density increases.
7. From Q1, $P_{O_{2}}=0.20 \mathrm{~atm}$ at the surface. At a depth of $10.0 \mathrm{~m}, P_{\text {total }}=2.0 \mathrm{~atm}$ and so $P_{O_{2}}=0.40 \mathrm{~atm}$. The increase in total pressure does not affect the percentage composition of the air.
8. If $P_{O_{2}}=1.6 \mathrm{~atm}$ then $P_{\text {total }}=8.0 \mathrm{~atm}$. This corresponds to a depth of 70.0 m .
