Sample Quiz 1 (i)

- **Last update: 21/08/17**
- 1. Reference: http://firstyear.chem.usyd.edu.au/LabManual/W5.pdf

When computed on a calculator, the algebraic expression $\frac{40.00 \text{ kg} \times 486 \text{ J}}{(6.1 \times 10^2 \text{ m} + 27.6 \text{ m})}$ has a

value of 30.48933501. Expressed to the appropriate number of significant figures, this is:

- a) 30 kg J m^{-1}
- b) 30. kg J m⁻¹
- c) 30.4 kg J m^{-1}
- d) 30.5 kg J m^{-1}
- e) $30.49 \text{ kg J m}^{-1}$
- 2. A particular chemical reaction has $\Delta H^{\circ} = +5 \text{ kJ mol}^{-1}$ and $\Delta S^{\circ} = +25 \text{ J K}^{-1} \text{ mol}^{-1}$. Assuming that these values do not change with temperature, in what temperature range is this reaction spontaneous?
- a) It is spontaneous at all temperatures
- b) It is not spontaneous at any temperature
- c) T > 200 K
- d) T < 200 K
- e) T < -200 K
- 3. An ideal gas receives 245 J of heat and expands by 1.30 L against an external pressure of 60.0 kPa. What is the change in internal energy of the system?
- a) +167 J
- b) +323 J
- c) -323 J
- d) 167 J
- e) 0 J
- 4. Use the data below to calculate $\Delta_{universe}S^o$ for the deposition of iodine at 298 K.

- \	252	т	$\tau z = 1$	mol^{-1}
a)	-555	J	\mathbf{V}	IIIOI

- c) $+63 \text{ J K}^{-1} \text{ mol}^{-1}$
- d) $+353 \text{ J K}^{-1} \text{ mol}^{-1}$
- e) $+377 \text{ J K}^{-1} \text{ mol}^{-1}$
- 5. In which one of the following processes does the entropy of the system decrease? Assume constant temperature and pressure unless specifically indicated otherwise.
- a) $CO_2(s) \rightarrow CO_2(g)$
- b) 1 mol $H_2(g)$ at 10 atm \rightarrow 1 mol $H_2(g)$ at 1 atm
- c) $O_2(g) + 2CO(g) \rightarrow 2CO_2(g)$
- d) $C_2H_5OH(1)$ at $20^{\circ}C \rightarrow C_2H_5OH(1)$ at $200^{\circ}C$
- e) $C_8H_{14}(1) \rightarrow C_4H_6(g) + C_4H_8(g)$

Questions 5 and 6 refer to the following reaction: $2NO_2(g) \rightleftharpoons N_2O_4(g)$ $K_p = 7.1$ at 25 °C and $K_p = 0.31$ at 70 °C with reference to a standard state of 1×10^5 Pa pressure.

6. Which one of the following statements is true?

a) $\Delta_r H^\circ > 0$ and $\Delta_r S^\circ > 0$ b) $\Delta_r H^\circ < 0$ and $\Delta_r S^\circ > 0$ c) $\Delta_r H^\circ < 0$ and $\Delta_r S^\circ < 0$

d) $\Delta_r H^\circ > 0$ and $\Delta_r S^\circ < 0$ e) There is insufficient information to work out both signs.

7. Which is closest to the value of K_p for the following reaction at 25 °C?

- a) -7.1 $\frac{1}{2}N_2O_4(g)$ \longrightarrow $NO_2(g)$
- b) -3.6
- c) 0.14
- d) 0.38
- e) 0.020

8. Methanol, CH₃OH, (8.011 g) was burnt in excess oxygen to yield liquid water and CO₂(g). 181.8 kJ of heat energy was liberated at 298 K and 101.3 kPa. The equation for the reaction is:

$$2CH_3OH(1) + 3O_2(g) \rightarrow 4H_2O(1) + 2CO_2(g)$$

What is the heat of combustion, ΔH^{0}_{298} (in kJ mol⁻¹) for methanol?

- a) -363.5
- b) +363.5
- c) + 181.8
- d) -727.2
- e) +727.2

9. Given the following thermochemical data, what is the enthalpy of formation $\Delta_f H^o_{298}$ for $C_6H_6(1)$ at 298 K and 101.3 kPa?

- a) $+329 \text{ kJ mol}^{-1}$
- $C_6H_6(1) + 3H_2(g) \rightarrow C_6H_{12}(1)$
- $\Delta H^{\rm o} = -206 \text{ kJ mol}^{-1}$

- b) $+206 \text{ kJ mol}^{-1}$
- $6H_2(g) + 6C(s) \rightarrow C_6H_{12}(l)$
- $\Delta H^{\rm o} = -123 \text{ kJ mol}^{-1}$

- c) $+83 \text{ kJ mol}^{-1}$
- d) -83 kJ mol⁻¹
- e) -329 kJ mol⁻¹

10. Samples of A (2.0 mol) and B (3.0 mol) are placed in a 10.0 L container and the following reaction takes place

$$2A(g) \implies 3B(g)$$

At equilibrium, the concentration of A is 0.14 M. What is the value of K_c ?

- a) 3.0
- b) 0.33
- c) 2.4
- d) 0.42
- e) 6.8

Correct answers: 1B, 2C, 3A, 4C, 5C, 6C, 7D, 8D, 9C, 10A

1. Reference: http://firstyear.chem.usyd.edu.au/LabManual/W5.pdf

When computed on a calculator, the algebraic expression $\frac{3.69 \text{ kg} \times 30. \text{ J}}{(87.1 \text{ m} + 98.5 \text{ m})}$ has a

value of 0.596443966. Expressed to the appropriate number of significant figures, this is:

- a) 0.5 kg J m^{-1}
- b) 0.6 kg J m^{-1}
- c) 0.59 kg J m^{-1}
- $d) \ 0.60 \ kg \ J \ m^{-1}$
- e) $0.596 \text{ kg J m}^{-1}$
- 2. A particular chemical reaction has $\Delta H^{\circ} = -5 \text{ kJ mol}^{-1}$ and $\Delta S^{\circ} = +25 \text{ J K}^{-1} \text{ mol}^{-1}$. Assuming that these values do not change with temperature, in what temperature range is ΔG° negative?
- a) at all temperatures
- b) at no temperature
- c) T > 200 K
- d) T < 200 K
- e) T < -200 K
- 3. An ideal gas receives 245 J of heat and contracts by 1.30 L against an external pressure of 60.0 kPa. What is the change in internal energy of the system?
- a) + 167
- b) +323 J
- c) -323 J
- d) 167 J
- e) 0 J
- 4. Use the data below to calculate $\Delta_{universe}S^{o}$ for the sublimation of iodine at 298 K.

	$\Delta_{\rm f}H^{\rm o}~({ m kJ~mol^{-1}})$	So (J K ⁻¹ mol ⁻¹)
I ₂ (s)	0.00	116
$I_2(g)$	62	261

- a) -353. J K⁻¹ mol⁻¹
- b) $-63.1 \text{ J K}^{-1} \text{ mol}^{-1}$
- c) $+63.1 \text{ J K}^{-1} \text{ mol}^{-1}$
- $d) \ +353 \ J \ K^{-1} \ mol^{-1}$
- e) $+377 \text{ J K}^{-1} \text{ mol}^{-1}$
- 5. In which one of the following processes does the entropy of the system increase? Assume constant temperature and pressure unless specifically indicated otherwise.
- a) $CO_2(g) \rightarrow CO_2(s)$
- b) 1 mol $H_2(g)$ at 1 atm \rightarrow 1 mol $H_2(g)$ at 10 atm
- c) $2CO_2(g) \rightarrow O_2(g) + 2CO(g)$
- d) C₂H₅OH(l) at 40 $^{\circ}\text{C} \,\rightarrow\,$ C₂H₅OH(l) at 20 $^{\circ}\text{C}$
- $e) \ C_4H_6(g) \ + \ C_4H_8(g) \ \to \ C_8H_{14}(l)$

Questions 5 and 6 refer to the following reaction: $N_2O_4(g)$ \rightleftharpoons $2NO_2(g)$ $K_p = 0.14$ at 25 °C and $K_p = 0.18$ at 70 °C with reference to a standard state of 1×10^5 Pa pressure. 6. Which one of the following statements is true? a) $\Delta_r H^{\circ} > 0$ and $\Delta_r S^{\circ} > 0$ b) $\Delta_r H^{\circ} < 0$ and $\Delta_r S^{\circ} > 0$ c) $\Delta_r H^{\circ} < 0$ and $\Delta_r S^{\circ} < 0$ d) $\Delta_r H^{\circ} > 0$ and $\Delta_r S^{\circ} < 0$ e) There is insufficient information to work out both signs. 7. Which is closest to the value of K_p for the following reaction at 25 °C? a) 7.1 $4NO_2(g)$ $2N_2O_4(g)$ b) -3.6 c) 51 d) 0.14 e) 0.37 8. Acetone, CH₃COCH₃, (5.808 g) was burnt in excess oxygen to yield liquid water and CO₂(g). 179.0 kJ of heat energy was liberated at 298 K and 101.3 kPa. The equation for the reaction is: $CH_3COCH_3(1) + 4O_2(g) \rightarrow 3H_2O(1) + 3CO_2(g)$ What is the heat of combustion, ΔH^{0}_{298} (in kJ mol⁻¹) for acetone? c) -17.90a) -1790. b) -179.0d) + 179.0e) + 1790.9. Given the following thermochemical data, what is the enthalpy of formation $\Delta_f H^0_{298}$ for PF₅(g) at 298 K and 100 kPa? a) $+582 \text{ kJ mol}^{-1}$ $\Delta H^{\rm o} = -1838 \text{ kJ mol}^{-1}$ $2P(s) + 3F_2(g) \rightarrow 2PF_3(g)$ b) -1163 kJ mol⁻¹ $PF_3(g) + F_2(g) \rightarrow PF_5(g)$ $\Delta H^{0} = -675 \text{ kJ mol}^{-1}$ c) -1257 kJ mol⁻¹ d) -1594kJ mol⁻¹ e) -2513 kJ mol⁻¹ 10. Samples of A (4.0 mol) and B (2.0 mol) are placed in a 5.0 L container and the following

reaction takes place $3A(g) \rightleftharpoons 2B(g)$

At equilibrium, the concentration of A is 0.82 M. What is the value of K_c ?

a) 0.27 b) 0.31 c) 2.4 d) 4.0 e) 30.

Correct answers: 1D, 2A, 3B, 4B, 5C, 6A, 7C, 8A, 9D, 10B Quiz (ii) needs checking.