CHEM1612 Worksheet 6 – Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: Strong and Weak Acids

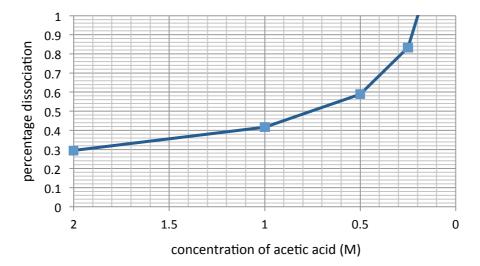
- 1. The major species present are $H_3O^+(aq)$, $Cl^-(aq)$ and $H_2O(l)$. There is essentially no "HCl(aq)".
- 2. The major species present are $CH_3COOH(aq)$ and $H_2O(l)$. The percentage ionization is very small and there is *very* little $H_3O^+(aq)$, $CH_3COO^-(aq)$.
- 3. CH₃COO⁻(aq) is the *dominant* species only at high pH.

4.
$$CH_3COOH(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + CH_3COO^-(aq) \qquad K_a =$$

$$F_{a} = \frac{[H_{3}O^{+}(aq)][CH_{3}COO^{-}(aq)]}{[CH_{3}COOH(aq)]}$$

- 5. The *major* species present are $CH_3NH_2(aq)$ and $H_2O(l)$.
- 6. $CH_3NH_3^+(aq)$ is the *dominant* species only at low pH.
- 7. (a) Aspirin is absorbed in the stomach. In the intestine, it is deprotonated.
 - (b) Amphetamine is absorbed in the intestine. In the stomach, it is protonated.

Model 2: A Solution Containing a Weak Acid


1. $[CH_3COOH(aq)]_{initial} = 2.0 \text{ M} \text{ and } [CH_3COOH(aq)]_{equilibrium} = 2.0 - x.$

The small *x* approximation corresponds to the approximation:

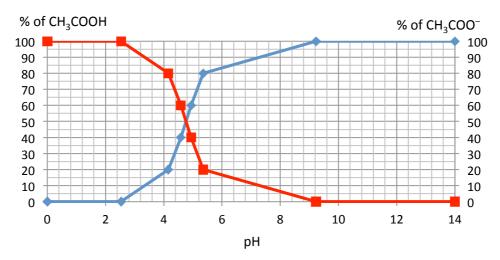
 $[CH_3COOH(aq)]_{equilibrium} = [CH_3COOH(aq)]_{initial}$

2.
$$x = \sqrt{K_a \times [HA]_{initial}}$$
 or $pH = -log_{10}(\sqrt{K_a \times [HA]_{initial}})$

- 3. (a) pH = 2.229, % dissociation = 0.30 (c) pH = 2.531, % dissociation = 0.59
 - (b) pH = 2.380, % dissociation = 0.42
- 4. See below.

(d) pH = 2.681. % dissociation = 0.83

- 5. The *degree* of dissociation *increases* as the weak acid is diluted, even though the *amount* of dissociated acid *decreases*.
- 6. $H_2O(l)$ and $CH_3COOH(aq)$. The amount of dissociation is very small (< 1%) and so the amount of $CH_3COO^-(aq)$ and $H_3O^+(aq)$ is tiny.


Model 3: Addition of Strong Base to a Solution of a Weak Acid

- 1. pH = 4.158
- 2. See table below.

Amount of NaOH(s) added (mol)	0.000	0.100	0.200	0.300	0.400	0.500
[CH₃COOH(aq)] (M)	0.500	0.400	0.300	0.200	0.100	0.000
[CH₃COO⁻(aq)] (M)	0.000	0.100	0.200	0.300	0.400	0.500
рН	2.5	4.2	4.6	4.9	5.4	9.2*

* This value is calculated using Model 4.

- 3. pH = 4.8
- 4. See below.

Model 4: Neutralizing a Weak Acid

- 1. $[CH_3COO^{-}(aq)] = 0.500 \text{ M}.$
- 2. pH = 9.23