1. (a) 0.2 M acetic acid

As acetic acid is a weak acid, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$must be calculated:

	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$
initial	0.2	large		0	0
change	$-x$	negligible		$+x$	$+x$
final	$0.2-x$	large		x	x

The equilibrium constant K_{a} is given by:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{x^{2}}{0.2-x}
$$

As $\mathrm{p} K_{\mathrm{a}}=4.76=-\log _{10} K_{\mathrm{a}}$ so $K_{\mathrm{a}}=10^{4.76}$. As K_{a} is very small, $0.2-x \sim 0.2$ and hence:

$$
x^{2}=0.2 \times 10^{-4.76} \quad \text { or } \quad x=0.0019 M=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Hence, the $\mathbf{p H}$ is given by:

$$
\mathbf{p H}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log _{10}[0.0019]=2.7
$$

(b) 0.2 M sodium acetate

As $\mathrm{CH}_{3} \mathrm{COO}^{-}$is a weak base, $\left[\mathrm{OH}^{-}\right]$must be calculated in a similar way:

	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathbf{O H}^{-}$	$\mathbf{C H}_{3} \mathbf{C O O H}$
initial	0.2	large		0	0
change	$-x$	negligible		$+x$	$+x$
final	$0.2-x$	large		x	x

The equilibrium constant K_{b} is given by:

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}=\frac{x^{2}}{0.2-x}
$$

For an acid and its conjugate base:

$$
\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00
$$

So

$$
\mathrm{p} K_{\mathrm{b}}=14.00-4.76=9.24
$$

As $\mathrm{p} K_{\mathrm{b}}=9.24, K_{\mathrm{b}}=10^{-9.24}$. Again, K_{b} is very small, $0.2-\boldsymbol{x} \sim 0.2$ and hence:

$$
x^{2}=0.2 \times 10^{-9.24} \quad \text { or } \quad x=0.00001 \mathrm{M}=[\mathrm{OH}]
$$

Hence, the pOH is given by:

$$
\mathrm{pOH}=-\log _{10}[\mathrm{OH}]=-\log _{10}[0.00001]=5.0
$$

Finally, $\mathbf{p H}+\mathbf{p O H}=14$ so

$$
\mathrm{pH}=14.0-5.0=9.0
$$

(c) A buffer that is 0.2 M in acetic acid and 0.2 M in sodium acetate

This solution contains an acid and its conjugate base so the HendersonHasselbalch equation can be used:

$$
\mathbf{p H}=\mathbf{p} K_{\mathrm{a}}+\log _{10}\left(\frac{[\text { base }]}{[\text { acid }]}\right)
$$

As $[$ acetic acid $]=[$ sodium acetate $], \log _{10}\left(\frac{[\text { base }]}{[\text { acid }]}\right)=\log _{10}(1)=0$ and so

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}=4.76
$$

2. (a) As the $\alpha-\mathbf{C O O H}$ group has the lowest $\mathbf{p k} \mathrm{a}_{\mathrm{a}}$ value, it is the most acidic. At $\mathbf{p H}=1.81$, the $\alpha-\mathrm{COOH}$ group is in equilibrium with its conjugate base. The $\mathrm{p} K_{\mathrm{a}}$ values of the imidazole $\mathrm{N}-\mathrm{H}$ and the $\alpha-\mathrm{NH}_{3}{ }^{+}$groups are higher than the $\mathbf{p H}$ value, both exist predominately in the protonated form at $\mathbf{p H}$ $=1.81$.

(b) As $\mathbf{p H}=\mathbf{6 . 0 5}$ is higher than its pK_{a} value, the $\alpha-\mathrm{COOH}$ group will exist predominately in its conjugate base form. The $\mathrm{p} \mathrm{K}_{\mathrm{a}}$ value for the $\alpha-\mathrm{NH}_{3}{ }^{+}$ group is higher than the $\mathbf{p H}$ value so it will exist predominately in its protonated form. The ring $\mathrm{N}-\mathrm{H}$ group will be in equilibrium with its conjugate base form.

(c) As $\mathbf{p H}=9.15$ is higher than their pK_{a} values, the $\alpha-\mathrm{COOH}$ and imidazole N -H groups will exist predominately in their conjugate base forms. The α $\mathbf{N H}_{3}$ group is in equilibrium with its conjugate base form.

3. The equilibrium of interest is:

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{l})
$$

where $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$is the acid and $\mathrm{HPO}_{4}{ }^{\mathbf{2 -}}$ is the base. The Henderson-Hasselbalch equation can be used to calculate the required concentrations of each:

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10}\left(\frac{[\text { base }]}{[\text { acid }]}\right) \text { or } \log _{10}\left(\frac{[\text { base }]}{[\text { acid }]}\right)=\mathrm{pH}-\mathrm{p} K_{\mathrm{a}} \\
& \log _{10}\left(\frac{[\text { base }]}{[\text { acid }]}\right)=(7.40-7.20)=0.20
\end{aligned}
$$

Hence, $\left(\frac{[\text { base }]}{[\text { acid }]}\right)=10^{0.20}$
Both the acid and base have initial concentrations of 0.10 M so the ratio of the volume of each required is:

$$
\left(\frac{V_{\text {base }}}{V_{\text {acid }}}\right)=10^{0.20}=1.58
$$

When the two solutions are added together, their total volume $=V_{\text {base }}+V_{\text {acid }}=1.0 \mathrm{~L}$. Hence, $\mathrm{V}_{\text {acid }}=1.0-\mathrm{V}_{\text {base }}$

$$
\left(\frac{V_{\text {base }}}{1.0-V_{\text {base }}}\right)=1.58 \text { so } V_{\text {base }}=0.61 \mathrm{~L} \text { and } V_{\text {acid }}=1.0-V_{\text {base }}=0.39 \mathrm{~L}
$$

4. The concentration of the acid that has dissociated at equilibrium can be calculated from the pH :

	HA	$\mathrm{H}_{2} \mathrm{O}$	\rightleftharpoons	$\mathrm{H}_{3} \mathrm{O}^{+}$	A^{-}
initial	0.6	large		0	0
change	$-x$	negligible		$+x$	$+x$
final	$0.6-x$	large		x	x

At equilibrium, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {from HA }}+\left[\mathrm{H}_{\mathbf{3}} \mathrm{O}^{+}\right]_{\text {from water. }}$ As $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {from water }} \sim \mathbf{1 0}^{-\mathbf{7}}$, it can be assumed that the $\mathbf{p H}$ is due to the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {from HA }}$. Therefore:

$$
\mathbf{p H}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \sim-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {from HA }}=-\log x=4.0
$$

so

$$
\mathrm{x}=10^{-4} \mathrm{M}
$$

The initial concentration of HA is 0.6 M . The percentage dissociation is:

$$
\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {from } \mathrm{HA}}}{[H A]+\left[A^{-}\right]}=\frac{10^{-4}}{0.6} \times 100 \%=\frac{10^{-4}}{0.6} \times 100 \%=0.017 \%
$$

5. (a) The titration is a $1: 1$ reaction between a weak acid and a strong base.
(i) Before addition of any base, the $\mathbf{p H}$ of the 0.100 M acetic solution follows the same method used in Q1(a).

Following the same steps (with a 0.100 M solution in place of a 0.2 M solution) gives the equilibrium constant K_{a} is given by:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{x^{2}}{0.1-x}
$$

With the approximation that $0.100-x \sim 0.100$,

$$
x^{2}=0.1 \times 10^{-4.76} \quad \text { or } \quad x=0.00132 \mathrm{M}=\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]
$$

Hence, the $\mathbf{p H}$ is given by:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log _{10}[0.00132]=2.88
$$

(ii) Addition of the strong base $\mathrm{OH}^{-}(\mathrm{aq})$ leads to the neutralization reaction:

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The number of moles of $\mathrm{CH}_{3} \mathrm{COO}^{-}$is equal to the number of moles of OH^{-} (aq) which have been added. The number of moles of $\mathbf{C H}_{3} \mathbf{C O O H}$ remaining is equal to the initial number of moles of $\mathrm{CH}_{3} \mathbf{C O O H}$ minus the number of moles of $\mathrm{OH}^{-}(\mathrm{aq})$ which have been added.

Initially, there is 50.0 mL of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ so

$$
\begin{aligned}
\boldsymbol{n}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{\text {initial }} & =\text { concentration } \times \text { volume } \\
& =0.100 \mathrm{M} \times 0.0500 \mathrm{~L}=0.00500 \mathrm{~mol}
\end{aligned}
$$

25.0 mL of $\mathbf{0 . 1 0 0} \mathrm{M} \mathrm{NaOH}$ contains

$$
\begin{aligned}
n\left(\mathrm{OH}^{-}\right)_{\text {added }}= & \text { concentration } \times \text { volume } \\
& =0.100 \mathrm{M} \times 0.0250 \mathrm{~L}=0.00250 \mathrm{~mol}
\end{aligned}
$$

Thus, after addition and the neutralization reaction, there are:

$$
\begin{aligned}
n\left(\mathrm{CH}_{3} \mathrm{COOH}\right) & =\boldsymbol{n}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{\text {initial }-} \boldsymbol{n (\mathrm { OH } ^ { - }) _ { \text { added } }} \\
& =(0.00500-0.00250) \mathrm{mol}=0.00250 \mathrm{~mol} \\
n\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)= & n\left(\mathrm{OH}^{-}\right)_{\text {added }}=0.00250 \mathrm{~mol}
\end{aligned}
$$

These quantities are now in a solution with total volume ($50.0+25.0$) mL $=75.0 \mathrm{~mL}$, so their concentrations are:

$$
\begin{aligned}
& c\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=n / V=0.00250 \mathrm{~mol} / 0.0750 \mathrm{~L}=0.0333 \mathrm{M} \\
& c\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)=n / V=0.00250 \mathrm{~mol} / 0.0750 \mathrm{~L}=0.0333 \mathrm{M}
\end{aligned}
$$

Using the Henderson-Hasselbalch equation gives

$$
\begin{aligned}
\mathbf{p H} & =\mathbf{p K}_{\mathrm{a}}+\log _{10}\left(\frac{[\text { base }]}{[\text { acid }]}\right) \\
& =4.76+\log _{10}\left(\frac{0.0333 \mathrm{M}}{0.0333 \mathrm{M}}\right)=4.76
\end{aligned}
$$

At the $1 / 2$ equivalence point, when the number of moles of base added is equal to $1 / 2$ the number of moles of acid originally present, the $\mathbf{p H}$ is equal to the $\mathrm{p} K_{\mathrm{a}}$.
(iii) 45.0 mL of $\mathbf{0 . 1 0 0} \mathrm{M} \mathrm{NaOH}$ corresponds to

$$
\begin{aligned}
\boldsymbol{n}\left(\mathrm{OH}^{-}\right)_{\text {added }}= & \text { concentration } \times \text { volume } \\
& =0.100 \mathrm{M} \times 0.0450 \mathrm{~L}=0.00450 \mathrm{~mol}
\end{aligned}
$$

Thus, after addition and the neutralization reaction, there are:

$$
\begin{aligned}
\boldsymbol{n}\left(\mathrm{CH}_{3} \mathrm{COOH}\right) & =\boldsymbol{n}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{\text {initial }}-\boldsymbol{n (\mathrm { OH } ^ { - }) _ { \text { added } }} \\
& =(0.00500-0.00450) \mathrm{mol}=0.00050 \mathrm{~mol}
\end{aligned}
$$

$$
n\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)=n\left(\mathrm{OH}^{-}\right)_{\text {added }}=0.00450 \mathrm{~mol}
$$

These quantities are now in a solution with total volume $(50.0+45.0) \mathbf{m L}$ $=95.0 \mathrm{~mL}$, so their concentrations are:

$$
\begin{aligned}
& c\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=n / V=0.00050 \mathrm{~mol} / 0.0950 \mathrm{~L}=0.00526 \mathrm{M} \\
& c\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)=n / V=0.00450 \mathrm{~mol} / 0.0950 \mathrm{~L}=0.0474 \mathrm{M}
\end{aligned}
$$

Using the Henderson-Hasselbalch equation gives

$$
\mathrm{pH}=4.76+\log _{10}\left(\frac{0.0474 \mathrm{M}}{0.00526 \mathrm{M}}\right)=5.71
$$

(Note: In fact one could have skipped the conversion of moles into concentration step, because the volume of solution is the same for $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$and it would just cancel out)
(iv) The addition of 50.0 mL of 0.100 M NaOH corresponds to the equivalence point as the number of moles of added base is equal to the number of moles of acid initially present. However, the $\mathbf{p H}$ is not equal to 7 for this point of the titration of a weak acid with a strong base.
50.0 mL of 0.100 M NaOH corresponds 0.00500 mol so whilst this leads to $n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\mathbf{0 . 0 0} \mathrm{mol}$, it also leads to $\boldsymbol{n}\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)=\mathbf{0 . 0 0 5 0 0} \mathbf{~ m o l}$. A solution of a weak base has $\mathbf{p H}>7$.

As the total volume is $(50.0+50.0) \mathrm{mL}=100.0 \mathrm{~mL}$, the concentration of $\mathrm{CH}_{3} \mathrm{COO}^{-}$is:

$$
c\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)=n / V=0.00500 \mathrm{~mol} / 0.1000 \mathrm{~L}=0.05000 \mathrm{M}
$$

The calculation of the pH now follows that in Q1(b) with the concentration of $\mathbf{0 . 0 5 0 0 0} \mathrm{M}$:

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}=\frac{x^{2}}{0.05000-x}=10^{-9.24}
$$

As $\mathbf{p} K_{\mathbf{b}}=9.24, K_{\mathbf{b}}=10^{-9.24}$. Again, $K_{\mathbf{b}}$ is very small, $0.05000-x \sim 0.05000$ and hence:

$$
x^{2}=0.0500 \times 10^{-9.24} \text { or } \quad x=5.36 \times 10^{-6} \mathrm{M}=[\mathrm{OH}]
$$

Hence, the pOH is given by:

$$
\mathrm{pOH}=-\log _{10}[\mathrm{OH}-]=-\log _{10}\left[5.36 \times 10^{-6}\right]=5.27
$$

Finally, $\mathbf{p H}+\mathbf{p O H}=14$ so

$$
\mathrm{pH}=14.0-5.27=8.73
$$

(v) Beyond the equivalence point, excess base is being added to a solution of a weak base and the pH is controlled by the excess amount of $\mathrm{OH}^{-}(\mathrm{aq})$. The calculation of the $\mathbf{p H}$ is then exactly the same as in $Q 7(a)(v)$ from Problem Sheet 5.
55.0 mL of 0.100 M NaOH corresponds to 0.00550 mol . Of this, $\mathbf{0 . 0 0 5 0 0} \mathbf{m o l}$ is used to react with the acid. The total volume is $(0.050+0.055) \mathrm{L}=0.105 \mathrm{~L}$. Hence

$$
\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=\frac{(0.00550 \mathrm{~mol})-(0.00500 \mathrm{~mol})}{(0.105 \mathrm{~L})}=0.00476 \mathrm{M}
$$

Hence, $\mathrm{pOH}=-\log _{10}(0.00476)=2,32$ and $\mathrm{pH}=14.00-2.32=11.7$.
(vi) $\quad 75.0 \mathrm{~mL}$ of 0.100 M NaOH corresponds to $\mathbf{0 . 0 0 7 5 0} \mathrm{mol}$ Of this, $\mathbf{0 . 0 0 5 0 0}$ mol is used to react with the acid and the total volume is $(0.050+0.075) \mathrm{L}$ $=0.125 \mathrm{~L}$. Hence

$$
\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=\frac{(0.00750 \mathrm{~mol})-(0.00500 \mathrm{~mol})}{(0.125 \mathrm{~L})}=0.0200 \mathrm{M}
$$

Hence, $\mathrm{pOH}=-\log _{10}(0.0200)=1.70$ and $\mathrm{pH}=14.00-1.70=12.3$
(b) Using these values, the $\mathbf{p H}$ curve for the titration can be constructed and is shown below (in pink).

(c) The figure also includes the data from Q7 in Problem Sheet 5 for a strong acid / strong base titration (in blue).

For a weak acid / strong base titration:
(i) The initial $\mathbf{p H}$ is higher. For a strong acid and a weak acid with the same concentration, the pH of the strong acid is lower.
(ii) The pH at the $1 / 2$ equivalence point is equal to the $\mathrm{p} K_{\mathrm{a}}$ of the weak acid.
(iii) At the equivalence point, the solution contains weak base and so the $\mathrm{pH}>7$.
(iv) After the equivalence point, the pH is determined only the concentration of excess strong base and is thus the same for the two titrations.

