CHEM1612 Answers to Problem Sheet 6

1. (a) 0.2 M acetic acid

As acetic acid is a weak acid, $[H_3O^+]$ must be calculated:

	СН ₃ СООН	H ₂ O	 H_3O^+	CH ₃ COO ⁻
initial	0.2	large	0	0
change	- <i>x</i>	negligible	+x	+x
final	0.2 - x	large	x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm CH}_3{\rm COO}^-]}{[{\rm CH}_3{\rm COOH}]} = \frac{x^2}{0.2 - x}$$

As $pK_a = 4.76 = -\log_{10}K_a$ so $K_a = 10^{-4.76}$. As K_a is very small, $0.2 - x \sim 0.2$ and hence:

$$x^2 = 0.2 \times 10^{-4.76}$$
 or $x = 0.0019$ M = [H₃O⁺]

Hence, the pH is given by:

$$pH = -log_{10}[H_3O^+] = -log_{10}[0.0019] = 2.7$$

(b) 0.2 M sodium acetate

As CH₃COO⁻ is a weak base, [OH⁻] must be calculated in a similar way:

	CH ₃ COO ⁻	H ₂ O	 OH ⁻	CH ₃ COOH
initial	0.2	large	0	0
change	- <i>x</i>	negligible	+x	+x
final	0.2 - x	large	x	x

The equilibrium constant K_b is given by:

$$K_{\rm b} = \frac{[\rm OH^{-}][\rm CH_{3}COOH]}{[\rm CH_{3}COO^{-}]} = \frac{x^2}{0.2 - x}$$

For an acid and its conjugate base:

$$\mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$$

SO

 $pK_b = 14.00 - 4.76 = 9.24$

As $pK_b = 9.24$, $K_b = 10^{-9.24}$. Again, K_b is very small, $0.2 - x \sim 0.2$ and hence:

 $x^2 = 0.2 \times 10^{-9.24}$ or x = 0.00001 M = [OH-]

Hence, the pOH is given by:

 $pOH = -log_{10}[OH^{-}] = -log_{10}[0.00001] = 5.0$

Finally, pH + pOH = 14 so

pH = 14.0 - 5.0 = 9.0

(c) A buffer that is 0.2 M in acetic acid and 0.2 M in sodium acetate

This solution contains an acid and its conjugate base so the Henderson-Hasselbalch equation can be used:

$$\mathbf{pH} = \mathbf{p}K_{\mathbf{a}} + \log_{10}\left(\frac{[\mathbf{base}]}{[\mathbf{acid}]}\right)$$

As [acetic acid] = [sodium acetate], $\log_{10}\left(\frac{[base]}{[acid]}\right) = \log_{10}(1) = 0$ and so

$$pH = pK_a = 4.76$$

2. (a) As the α -COOH group has the lowest pk_a value, it is the most acidic. At pH = 1.81, the α -COOH group is in equilibrium with its conjugate base. The pK_a values of the imidazole N-H and the α -NH₃⁺ groups are higher than the pH value, both exist predominately in the protonated form at pH = 1.81.

(b) As pH = 6.05 is higher than its pK_a value, the α -COOH group will exist predominately in its conjugate base form. The pK_a value for the α -NH₃⁺ group is higher than the pH value so it will exist predominately in its protonated form. The ring N-H group will be in equilibrium with its conjugate base form.

(c) As pH = 9.15 is higher than their p K_a values, the α -COOH and imidazole N-H groups will exist predominately in their conjugate base forms. The α -NH₃ group is in equilibrium with its conjugate base form.

3. The equilibrium of interest is:

 $H_2PO_4(aq) + H_2O(l) \implies HPO_4^{2-}(aq) + H_3O^{+}(l)$

where $H_2PO_4^-$ is the acid and HPO_4^{2-} is the base. The Henderson-Hasselbalch equation can be used to calculate the required concentrations of each:

$$pH = pK_a + \log_{10} \left(\frac{[base]}{[acid]}\right) \text{ or } \log_{10} \left(\frac{[base]}{[acid]}\right) = pH - pK_a$$
$$\log_{10} \left(\frac{[base]}{[acid]}\right) = (7.40 - 7.20) = 0.20$$
Hence, $\left(\frac{[base]}{[acid]}\right) = 10^{0.20}$

Both the acid and base have initial concentrations of 0.10 M so the ratio of the volume of each required is:

$$\left(\frac{V_{base}}{V_{acid}}\right) = 10^{0.20} = 1.58$$

When the two solutions are added together, their total volume = $V_{base} + V_{acid} = 1.0$ L. Hence, $V_{acid} = 1.0$ - V_{base}

$$\left(\frac{V_{base}}{1.0 - V_{base}}\right) = 1.58 \text{ so } V_{base} = 0.61 \text{ L and } V_{acid} = 1.0 - V_{base} = 0.39 \text{ L}$$

4. The concentration of the acid that has dissociated at equilibrium can be calculated from the pH:

	НА	H ₂ O	1	H_3O^+	\mathbf{A}^{-}
initial	0.6	large		0	0
change	-x	negligible		+x	+x
final	0.6 - x	large		x	x

At equilibrium, $[H_3O^+] = [H_3O^+]_{from HA} + [H_3O^+]_{from water}$. As $[H_3O^+]_{from water} \sim 10^{-7}$, it can be assumed that the pH is due to the $[H_3O^+]_{from HA}$. Therefore:

$$pH = -log_{10}[H_3O^+] \sim -log[H_3O^+]_{from HA} = -logx = 4.0$$

SO

$$x = 10^{-4} M$$

The initial concentration of HA is 0.6 M. The percentage dissociation is:

$$\frac{[H_3O^+]_{from\,HA}}{[HA]+[A^-]} = \frac{10^{-4}}{0.6} \times 100\% = \frac{10^{-4}}{0.6} \times 100\% = 0.017\%$$

5.

- (a) The titration is a 1:1 reaction between a weak acid and a strong base.
 - (i) Before addition of any base, the pH of the 0.100 M acetic solution follows the same method used in Q1(a).

Following the same steps (with a 0.100 M solution in place of a 0.2 M solution) gives the equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm CH}_3{\rm COO}^-]}{[{\rm CH}_3{\rm COOH}]} = \frac{x^2}{0.1 - x}$$

With the approximation that $0.100 - x \sim 0.100$,

$$x^2 = 0.1 \times 10^{-4.76}$$
 or $x = 0.00132$ M = [H₃O⁺]

Hence, the pH is given by:

$$pH = -log_{10}[H_3O^+] = -log_{10}[0.00132] = 2.88$$

(ii) Addition of the strong base OH (aq) leads to the neutralization reaction:

 $CH_3COOH(aq) + OH^{-}(aq) \rightarrow CH_3COO^{-}(aq) + H_2O(l)$

The number of moles of CH_3COO^- is equal to the number of moles of OH^- (aq) which have been added. The number of moles of CH_3COOH remaining is equal to the initial number of moles of CH_3COOH minus the number of moles of OH^- (aq) which have been added.

Initially, there is 50.0 mL of 0.100 M CH₃COOH so

 $n(CH_3COOH)_{initial} = concentration \times volume$ = 0.100 M × 0.0500 L = 0.00500 mol

25.0 mL of 0.100 M NaOH contains

 $n(OH^{-})_{added} = concentration \times volume$ = 0.100 M × 0.0250 L = 0.00250 mol

Thus, after addition and the neutralization reaction, there are:

 $n(CH_3COOH) = n(CH_3COOH)_{initial} - n(OH^-)_{added}$ = (0.00500 - 0.00250) mol = 0.00250 mol

 $n(CH_3COO^{-}) = n(OH^{-})_{added} = 0.00250 \text{ mol}$

These quantities are now in a solution with total volume (50.0 + 25.0) mL = 75.0 mL, so their concentrations are:

 $c(CH_3COOH) = n / V = 0.00250 \text{ mol} / 0.0750 \text{ L} = 0.0333 \text{ M}$

 $c(CH_3COO^-) = n / V = 0.00250 \text{ mol} / 0.0750 \text{ L} = 0.0333 \text{ M}$

Using the Henderson-Hasselbalch equation gives

$$pH = pK_a + \log_{10} \left(\frac{[base]}{[acid]} \right)$$
$$= 4.76 + \log_{10} \left(\frac{0.0333 M}{0.0333 M} \right) = 4.76$$

At the $\frac{1}{2}$ equivalence point, when the number of moles of base added is equal to $\frac{1}{2}$ the number of moles of acid originally present, the pH is equal to the p K_{a} .

(iii) 45.0 mL of 0.100 M NaOH corresponds to

$$n(OH^{-})_{added} = concentration \times volume$$

= 0.100 M × 0.0450 L = 0.00450 mol

Thus, after addition and the neutralization reaction, there are:

$$n(CH_3COOH) = n(CH_3COOH)_{initial} - n(OH^-)_{added}$$

= (0.00500 - 0.00450) mol = 0.00050 mol

 $n(CH_3COO^{-}) = n(OH^{-})_{added} = 0.00450 \text{ mol}$

These quantities are now in a solution with total volume (50.0 + 45.0) mL = 95.0 mL, so their concentrations are:

$$c(CH_3COOH) = n / V = 0.00050 \text{ mol} / 0.0950 \text{ L} = 0.00526 \text{ M}$$

 $c(CH_3COO^-) = n / V = 0.00450 \text{ mol} / 0.0950 \text{ L} = 0.0474 \text{ M}$

Using the Henderson-Hasselbalch equation gives

$$pH = 4.76 + \log_{10} \left(\frac{0.0474 \,\mathrm{M}}{0.00526 \,\mathrm{M}} \right) = 5.71$$

(Note: In fact one could have skipped the conversion of moles into concentration step, because the volume of solution is the same for CH₃COOH and CH3COO⁻ and it would just cancel out)

(iv) The addition of 50.0 mL of 0.100 M NaOH corresponds to the equivalence point as the number of moles of added base is equal to the number of moles of acid initially present. However, the pH is *not* equal to 7 for this point of the titration of a weak acid with a strong base.

50.0 mL of 0.100 M NaOH corresponds 0.00500 mol so whilst this leads to $n(CH_3COOH) = 0.00$ mol, it also leads to $n(CH_3COO^-) = 0.00500$ mol. A solution of a weak base has pH > 7.

As the total volume is (50.0 + 50.0) mL = 100.0 mL, the concentration of CH₃COO⁻ is:

$$c(CH_3COO^-) = n / V = 0.00500 \text{ mol} / 0.1000 \text{ L} = 0.05000 \text{ M}$$

The calculation of the pH now follows that in Q1(b) with the concentration of 0.05000 M:

$$K_{\rm b} = \frac{[\rm OH^{-}][\rm CH_{3}COOH]}{[\rm CH_{3}COO^{-}]} = \frac{x^2}{0.05000 - x} = 10^{-9.24}$$

As $pK_b = 9.24$, $K_b = 10^{-9.24}$. Again, K_b is very small, $0.05000 - x \sim 0.05000$ and hence:

$$x^2 = 0.0500 \times 10^{-9.24}$$
 or $x = 5.36 \times 10^{-6} \text{ M} = [\text{OH}\text{-}]$

Hence, the pOH is given by:

$$pOH = -log_{10}[OH^{-}] = -log_{10}[5.36 \times 10^{-6}] = 5.27$$

Finally, pH + pOH = 14 so

$$pH = 14.0 - 5.27 = 8.73$$

(v) Beyond the equivalence point, excess base is being added to a solution of a weak base and the pH is controlled by the excess amount of OH⁻(aq). The calculation of the pH is then *exactly* the same as in Q7(a)(v) from Problem Sheet 5.

55.0 mL of 0.100 M NaOH corresponds to 0.00550 mol. Of this, 0.00500 mol is used to react with the acid. The total volume is (0.050 + 0.055) L = 0.105 L. Hence

 $[OH^{-}(aq)] = \frac{(0.00550 \text{ mol}) - (0.00500 \text{ mol})}{(0.105 \text{ L})} = 0.00476 \text{ M}$

Hence, pOH = -log₁₀(0.00476) = 2,32 and pH = 14.00 - 2.32 = 11.7.

(vi) 75.0 mL of 0.100 M NaOH corresponds to 0.00750 mol Of this, 0.00500 mol is used to react with the acid and the total volume is (0.050 + 0.075) L = 0.125 L. Hence

$$[OH^{-}(aq)] = \frac{(0.00750 \text{ mol}) - (0.00500 \text{ mol})}{(0.125 \text{ L})} = 0.0200 \text{ M}$$

Hence, pOH = -log₁₀(0.0200) = 1.70 and pH = 14.00 - 1.70 = 12.3

(b) Using these values, the pH curve for the titration can be constructed and is shown below (in pink).

(c) The figure also includes the data from Q7 in Problem Sheet 5 for a strong acid / strong base titration (in blue).

For a weak acid / strong base titration:

(i) The initial pH is higher. For a strong acid and a weak acid with the *same* concentration, the pH of the strong acid is lower.

- (ii) The pH at the $\frac{1}{2}$ equivalence point is equal to the pK_a of the weak acid.
- (iii) At the equivalence point, the solution contains weak base and so the pH > 7.
- (iv) After the equivalence point, the pH is determined only the concentration of excess strong base and is thus the *same* for the two titrations.