1. A 1.0 L flask contains a mixture of hydrogen (8.0 atm), oxygen (4.0 atm) and neon (2.0 atm) at the stated partial pressures at a temperature of 40 °C. What is the total pressure inside the flask at 40 °C after the mixture is ignited. Ignore the vapour pressure of water.

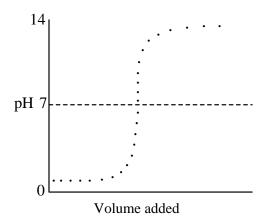
- a) 14.0 atm
- b) 10.0 atm
- c) 6.0 atm
- d) 2.0 atm
- e) 0.0 atm

2. Assuming ideal behaviour, what is the boiling point of a solution of sodium hydroxide (150.0 g) in water (900.0 g)? The boiling point elevation constant, K_b , for water is 0.51 K kg mol⁻¹.

- a) 106.4 °C
- b) 104.3 °C
- c) 102.1 °C
- d) 97.9 °C
- e) 95.8 °C

3. Which one of the following is **not** an example of a conjugate acid-base pair?

- a) NH₄⁺, NH₃
- b) HI, I-
- c) CH₃CH₂OH₂⁺, CH₃CH₂O⁻
- d) HSO₃⁻, SO₃²⁻
- e) H₂O, OH⁻


4. Which one of the following sets of 0.1 M solutions is arranged in order of increasing boiling point?

- a) glucose < NaCl < NH $_3$ < Na $_2$ SO $_4$
- b) glucose < HBr < Na₃PO₄ < Na₂SO₄
- c) $Na_2SO_4 < Na_3PO_4 < HBr < glucose$
- d) glucose < HBr < Na₂SO₄ < Na₃PO₄
- e) $HBr < Na_2SO_4 < Na_3PO_4 < glucose$

5. What is the pH of a 0.20 M solution of boric acid? The p K_a of boric acid is 9.24.

- a) 0.70
- b) 2.73
- c) 4.97
- d) 5.12
- e) 5.87

- 6. What is the pH of a 0.045 M solution of KOBr? The p K_a of HOBr is 8.63.
- a) 4.74
- b) 4.99
- c) 8.25
- d) 9.01
- e) 10.64
- 7. A buffered solution is $0.0500 \text{ M CH}_3\text{COOH}$ and $0.0400 \text{ M NaCH}_3\text{CO}_2$. If 0.0100 mol of gaseous HCl is added to 1.00 L of the buffered solution, what is the final pH of the solution? For acetic acid, $pK_a = 4.76$
- a) 4.76
- b) 4.46
- c) 4.66
- d) 4.86
- e) 4.54
- 8. In each of the following titrations, the first solution is in the burette and the second solution is in the titration flask. For which titration would the curve illustrated be typical?

- a) Na₂CO₃ (0.05 M) / HCl (0.1 M)
- b) NaOH (0.1 M) / HI (0.1 M)
- c) NaOH (0.1 M) / CH₃COOH (0.1 M)
- d) NH₃ (0.1 M) / CH₃COOH (0.1 M)
- e) NH₃ (0.1 M) / HCl (0.1 M)
- 9. Given the initial rate data below, what is the rate law for the following reaction?

$$2ClO_2(aq) \ + \ 2OH^-(aq) \ \to \ ClO_3^-(aq) \ + \ ClO_2^-(aq) \ + \ H_2O$$

[ClO ₂] (mol L ⁻¹)	[OH ⁻] (mol L ⁻¹)	Initial rate (mol L ⁻¹ s ⁻¹)
0.100	0.100	0.23
0.200	0.050	0.46
0.200	0.100	0.92

- a) rate = $k[ClO_2][OH^-]^2$
- b) rate = $k[\text{ClO}_2]^2[\text{OH}^-]$
- c) rate = $k[ClO_2]^2[OH^-]^2$

- d) rate = $k[ClO_2][OH^-]$
- e) rate = $k[ClO_2]^3$
- 10. How long does it take for the activity a sample of 131 I to drop to 95% of its initial value? The half-life of 131 I is 8.02 days.
- a) 0.59 days
- b) 0.26 days
- c) 1.37 days
- d) 0.41 days
- e) 5.2 days

Correct answers:

1D, 2B, 3C, 4D, 5C, 6E, 7B, 8B, 9B, 10A

1. A 1.0 L flask contains a mixture of hydrogen (8.0 atm), oxygen (4.0 atm) and neon (2.0 atm) at the stated partial pressures at a temperature of 200 °C. What is the total pressure inside the flask at 200 °C after the mixture is ignited.

a) 14.0 atm

b) 10.0 atm

c) 8.0 atm

d) 4.0 atm

e) 2.0 atm

2. Assuming ideal behaviour, what is the freezing point of a solution of sodium hydroxide (95.0 g) in water (600.0 g)? The freezing point depression constant, K_f , for water is 1.86 K kg mol⁻¹.

a) −14.7 °C

b) -7.36 °C

c) 0 °C

d) 7.36 °C

e) 14.7 °C

3. Which of the following is **not** an example of a conjugate acid-base pair?

a) O, OH-

b) HSO₃⁻, SO₃²⁻

c) HCN, CN⁻

d) H₃PO₄, H₂PO₄

e) H₃O⁺, H₂O

4. Which one of the following sets of 0.1 M solutions is arranged in order of increasing boiling point?

a) sucrose < NaCl < CH₃COOH < Na₂SO₄

b) sucrose < HCl < Na₃PO₄ < K₂SO₄

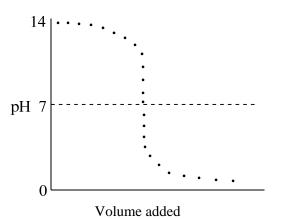
c) sucrose < CH₃COOH < MgCl₂ < K₃PO₄

d) $HBr < Na_2SO_4 < Na_3PO_4 < sucrose$

e) $Na_2SO_4 < K_3PO_4 < HBr < sucrose$

5. What is the pH of a 2.00 M solution of hydrazoic acid, HN₃? The p K_a of HN₃ is 4.65.

a) -0.30


b) 0.48

c) 2.00

d) 2.17

e) 4.35

- 6. What is the pH of a 0.42 M solution of sodium azide, NaN₃? The p K_a of HN₃ is 4.65.
- a) 4.74
- b) 8.25
- c) 9.14
- d) 9.73
- e) 13.62
- 7. A buffered solution is $0.0600 \text{ M CH}_3\text{COOH}$ and $0.0300 \text{ M NaCH}_3\text{CO}_2$. If 0.0200 mol of solid NaOH is added to 1.00 L of the buffered solution, what is the final pH of the solution? For acetic acid, $pK_a = 4.76$
- a) 4.76
- b) 4.46
- c) 4.66
- d) 4.86
- e) 4.54
- 8. In each of the following titrations, the first solution is in the burette and the second solution is in the titration flask. For which titration would the curve illustrated be typical?

- a) HCl (0.1 M) / Na₂CO₃ (0.05 M)
- b) $HCl(0.1 M) / NH_3(0.1 M)$
- c) CH₃COOH / NaOH (0.1 M) (0.1 M)
- d) CH₃COOH (0.1 M) / NH₃ (0.1 M)
- e) HI (0.1 M) / NaOH (0.1 M)
- 9. Given the initial rate data below, what is the rate law for the following reaction?

$$2ClO_2(g) \ + \ F_2(g) \ \rightarrow \ 2FClO_2(g)$$

[ClO ₂] (mol L ⁻¹)	$[F_2] $ $(\text{mol } L^{-1})$	Initial rate (mol L ⁻¹ s ⁻¹)
0.010	0.10	1.2×10^{-3}
0.040	0.10	4.8×10^{-3}
0.010	0.20	2.4×10^{-3}

- a) rate = $k[ClO_2][F_2]^2$
- b) rate = $k[ClO_2]^2[F_2]$
- c) rate = $k[ClO_2]^2[F_2]^2$

- d) rate = $k[ClO_2][F_2]$
- e) rate = $k[ClO_2]^2$
- 10. How long does it take for the activity a sample of ¹⁴C to drop to 55% of its initial value? The half-life of ¹⁴C is 5730 years.
- a) 2100 years years

Correct answers:

- b) 11000 years
- c) 3400 years
- d) 4900 years
- e) 8800

1B, 2A, 3A, 4C, 5D, 6C, 7D, 8E, 9D, 10D