1.

	species	name	stereoisomerism of complex
(a)	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$	pentamminechloridocobalt(III) chloride	none
(a)	$\left[\mathrm{FeBr}_{2}\left(\mathrm{OH}_{2}\right)_{4}\right]$	tetraaquadibromidoiron(II)	geometric isomers:
(a)	$\mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$	potassium dicyanidoargenate	none

2. 1.0 g of Au corresponds to $\frac{\text { mass }}{\text { atomicmass }}=\frac{1.0 \mathrm{~g}}{196.97 \mathrm{~g} \mathrm{~mol}^{-1}}==0.0051 \mathrm{~mol}$.

Reduction to Au^{3+} requires $3 \mathrm{e}^{-}, \mathrm{Au}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}$. Production of 0.051 mol of Au therefore requires $(3 \times 0.0051)=0.015 \mathrm{~mol}$ of electrons $=\boldsymbol{n}$.
The number of electrons delivered by a current I in a time t is given by:

$$
\text { number of moles of electrons }=\frac{I \times t}{F} \text { where } F \text { is Faraday's constant }=96485 \mathrm{C} \mathrm{~mol}^{-1}
$$

Therefore,

$$
t=\frac{F \times n}{I}=\frac{\left(96485 \mathrm{Cmol}^{-1}\right) \times(0.015 \mathrm{~mol})}{\left(2.0 \mathrm{Cs}^{-1}\right)}=730 \mathrm{~s}=12 \mathrm{minutes}
$$

3. (a) Reduction always occurs at the cathode. Oxidation always occurs at the anode. As $\mathbf{S n}^{2+}$ has the less positive reduction potential, it is reversed so the two half cell reactions are:

$$
\begin{array}{ll}
\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+} & \text { reduction: cathode } \\
\mathrm{Sn} \rightarrow \mathrm{Sn}^{2+}+2 \mathrm{e}^{-} & \begin{array}{l}
\text { oxidation: anode }
\end{array}
\end{array}
$$

(b) The two half cells combine:

$$
\mathrm{Sn}+2 \mathrm{Fe}^{3+} \rightarrow \mathrm{Sn}^{2+}+2 \mathrm{Fe}^{2+}
$$

(c) The cell potential is given by:

$$
E_{\text {cell }}^{0}=E_{\text {cathode }}^{0}-E_{\text {anode }}^{0}=((0.77)-(-0.13) \mathrm{V})=0.90 \mathrm{~V}
$$

(d) The equilibrium constant for this $2 \mathrm{e}^{-}$process can be calculated using $\boldsymbol{E}_{\text {cell }}^{0}$ $=\frac{R T}{n F} \ln K$:

$$
\begin{aligned}
& \ln K=\frac{(2) \times\left(96485 \mathrm{Cmol}^{-1}\right)}{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K})} \times(0.90 \mathrm{~V})=70 \\
& K=\mathrm{e}^{70}=2.8 \times 10^{30}
\end{aligned}
$$

The cell potential of 0.90 V corresponds to a highly favourable cell reaction.
(e) Using $\Delta \boldsymbol{G}^{\circ}=\boldsymbol{-} \boldsymbol{F} \boldsymbol{E}^{\circ}$ or $\Delta \boldsymbol{G}^{\circ}=\boldsymbol{-} \boldsymbol{R} \boldsymbol{\operatorname { l n }} \mathrm{K}$:

$$
\begin{aligned}
\Delta G^{\circ} & =-n F E^{\circ}=-(2) \times\left(96485 \mathrm{C} \mathrm{~mol}^{-1}\right) \times(0.90 \mathrm{~V})=170000 \mathrm{~J} \mathrm{~mol}^{-1} \\
& =170 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

or

$$
\begin{aligned}
\Delta G^{\circ} & =-R T \ln K=-\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K}) \times \ln \left(2.8 \times 10^{30}\right) \\
& =170 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

(f) When equilibrium is reached, the cell is exhausted and $E=0 \mathrm{~V}$.
(g) The reaction quotient \boldsymbol{Q} is given by:

$$
Q=\frac{\left[\mathbf{S n}^{2+}\right]\left[\mathrm{Fe}^{3+}\right]^{2}}{\left[\mathrm{Fe}^{2+}\right]^{2}}
$$

The cell potential when $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Fe}^{3+}\right]=1 \mathrm{M}$ and $\left[\mathrm{Sn}^{2+}\right]=0.001 \mathrm{M}$ can be calculated using the Nernst equation,

$$
\begin{aligned}
E & =E^{o}-\frac{R T}{n F} \ln Q \\
& =(0.090 \mathrm{~V})-\frac{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K})}{(2) \times\left(96485 \mathrm{C} \mathrm{~mol}^{-1}\right)} \ln \left[\frac{(0.001)(1)^{2}}{(1)^{2}}\right]=0.99 \mathrm{~V}
\end{aligned}
$$

4. The reaction quotient is given by $\boldsymbol{Q}=\frac{\left[\mathrm{NAD}^{+}\right]\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{NADH}]\left[\mathrm{H}^{+}\right]}=\left[\mathrm{H}^{+}\right]$
as NADH and NAD^{+}are at standard, 1 M concentrations.
As $\mathbf{p H}=-\log _{10}\left(\left[\mathrm{H}^{+}\right]\right)$, the biological standard state corresponds to $\left[\mathrm{H}^{+}\right]=10^{-\mathbf{7} .0} \mathrm{M}$.
The cell potential for this $2 \mathrm{e}^{-}$process with $\left[\mathrm{H}^{+}\right]=10^{-7.0} \mathrm{M}$ can be calculated using the Nernst equation,

$$
E^{\circ \prime}=E^{o}-\frac{R T}{n F} \ln Q=(0.527)-\frac{(8.314) \times(298)}{(2) \times(96485)} \ln \left(10^{-7.0}\right)=0.73 \mathrm{~V}
$$

5. (a) Combining the half cell for oxidation of NADH with the half cell for reduction of the Pv^{-}ion gives the overall cell reaction as:

$$
\mathbf{N A D H}+\mathbf{P y}^{-}+\mathbf{3} \mathbf{H}^{+} \rightleftharpoons \mathbf{N A D}^{+}+\mathbf{P y H}_{\mathbf{2}}^{-}+\mathbf{2} \mathbf{H}^{+}
$$

or

$$
\mathbf{N A D H}+\mathbf{P y}^{-}+\mathbf{H}^{+} \rightleftharpoons \mathbf{N A D}^{+}+\mathbf{P y H}_{2}^{-}
$$

(b) $\quad E^{01}=-0.185+0.73=0.55 \mathrm{~V}$
(c) The equilibrium constant for this $2 \mathrm{e}^{-}$process can be calculated using $\boldsymbol{E}_{\text {cell }}^{0}$ $=\frac{R T}{n F} \ln K$:

$$
\begin{aligned}
& \ln K=\frac{(2) \times\left(96485 \mathrm{Cmol}^{-1}\right)}{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K})} \times(0.55)=42.8 \\
& K=\mathrm{e}^{42.8}=3.7 \times 10^{18}
\end{aligned}
$$

(d) Using $\Delta \boldsymbol{G}^{\circ}=\boldsymbol{- n} \boldsymbol{F} \boldsymbol{E}^{\circ}$ or $\Delta \boldsymbol{G}^{\circ}=-\boldsymbol{R} \boldsymbol{\operatorname { l n }} K$:

$$
\begin{aligned}
\Delta G^{\circ} & =-\mathrm{nFE}^{\circ}=-(2) \times\left(96485 \mathrm{C} \mathrm{~mol}^{-1}\right) \times(0.55 \mathrm{~V}) \\
& =-110000 \mathrm{~J} \mathrm{~mol}^{-1}=-110 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

or

$$
\begin{aligned}
\Delta G^{\circ} & =-R T \ln K=-\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K}) \times \ln \left(3.7 \times 10^{18}\right) \\
& =-110 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

(e) (i) If the $\mathbf{p H}$ is reduced to $\mathbf{6 . 0},\left[\mathrm{H}^{+}\right]=10^{-6.0}$. This will decrease \boldsymbol{E} for the oxidation of NADH and hence increase the overall cell potential:

$$
\begin{aligned}
E\left(\mathrm{NADH} / \mathrm{NAD}^{+}\right) & =E^{o}-\frac{R T}{n F} \ln Q \\
& =(0.527 \mathrm{~V})-\frac{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K})}{(2) \times\left(96485 \mathrm{Cmol}^{-1}\right)} \ln \left(10^{-6.0}\right) \\
& =0.70 \mathrm{~V}
\end{aligned}
$$

Hence, $E_{\text {overall }}=(-0.185+0.70) \mathrm{V}=0.52 \mathrm{~V}$
(ii) If NADH is at the non-standard concentration of 0.1 M , the reaction quotient for the NADH/NAD ${ }^{+}$cell becomes

$$
Q=\frac{\left[\mathrm{NAD}^{+}\right]\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{NADH}]\left[\mathrm{H}^{+}\right]}=\frac{\left[\mathrm{H}^{+}\right]}{[\mathrm{NADH}]}=\frac{\left(10^{-7.0}\right)}{(0.1)}=10^{-6}
$$

As in part (i), this decreases $E\left(N A D H / N A D^{+}\right)$to 0.70 V and hence decreases $\boldsymbol{E}_{\text {overall }}$ to 0.52 V .
(iii) The Nernst equation gives the half cell potentials as:

$$
E=E^{o}-\frac{R T}{n F} \ln Q
$$

The effect of changing the temperature is not just due to the value of T in this equation. Changing the temperature will also affect the equilibrium constant and hence E^{o}. The standard potential is not defined as being at 298 K and a different value must be used for each temperature.
6. Assuming that the cell membrane has a much higher permeability to \mathbf{K}^{+}than for all other ions, the intracellular \rightarrow extracellular process corresponds to the reaction and reaction quotient below:

$$
\begin{aligned}
& \mathrm{K}_{\text {intracellular }}^{+} \rightarrow \mathrm{K}_{\text {extracellular }}^{+} \\
& Q=\left[\mathrm{K}^{+}\right]_{\text {extracellular }} /\left[\left[\mathrm{K}^{+}\right]_{\text {intracellular }}=4 / 140=\mathbf{0 . 0 2 9}\right.
\end{aligned}
$$

The temperature of healthy human is around $37^{\circ} \mathrm{C}$, or $(37+273) \mathrm{K}=310 \mathrm{~K}$.
The standard cell potential, E°, is zero as if all concentrations are 1 M , there is no overall process. Hence, the potential difference arises from the concentration difference only and is given by the Nernst equation (\mathbf{z} is the valence of the ion diffusing, i.e. +1 for \mathbf{K}^{+}):

$$
E=\frac{R T}{z F} \ln Q=[(8.314 \times 310) / 96500] \ln (0.029)=-0.095 \mathrm{~V}
$$

