(a) Between experiments (1) and (2), [NO] is constant. Doubling [O_{2}] leads to the initial reaction rate doubling:
the reaction is first order with respect to O_{2}.
Between experiments (1) and (3), $\left[\mathrm{O}_{2}\right]$ is constant. Doubling [NO] leads to the initial reaction rate increases by a factor of four:
the reaction is second order with respect to NO.
Thus,

$$
\text { rate } \alpha\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}=\mathrm{k}\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}
$$

Using experiment (1), rate $=3.20 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ when $\left[\mathrm{O}_{2}\right]=1.10 \times 10^{-2}$ $\mathrm{mol} \mathrm{L}{ }^{-1}$ and $[\mathrm{NO}]=1.30 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$. Hence, for k and its units:

$$
\begin{aligned}
& 3.20 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}=k \times\left(1.10 \times 10^{-2} \mathrm{~mol} \mathrm{~L}\right) \times\left(1.30 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{1}\right)^{2} \\
& \left(\mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\right)=(\text { units of } k) \times\left(\mathrm{mol} \mathrm{~L}^{-1}\right) \times\left(\mathrm{mol} \mathrm{~L}^{-1}\right)^{2} \\
& k=1.7 \times 10^{3} \mathrm{~mol}^{-2} \mathrm{~L}^{2} \mathrm{~s}^{-1}
\end{aligned}
$$

(b) According to the reaction equation:

$$
\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Two moles of NO_{2} are produced for every mole of O_{2} which reacts. The react of formation of NO_{2} is thus twice the rate of consumption of oxygen. If the initial rate of consumption of oxygen is $1 \times 10^{\mathbf{3}} \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$, the initial rate of formation of $\mathrm{NO}_{\mathbf{2}}(\mathrm{g})$ is $\mathbf{2} \times 10^{\mathbf{3}} \mathbf{m o l ~ L}^{\mathbf{- 1}} \mathrm{s}^{\mathbf{- 1}}$.
2. For a first order reaction, the rate constant and half life are related by $k=\frac{\ln 2}{t_{1 / 2}}$. Thus,

$$
k=\frac{\ln 2}{\left(6.00 \times 10^{4} \mathrm{~s}\right)}=1.16 \times 10^{-5} \mathrm{~s}^{-1}
$$

3. The rate constants at two different temperatures are related through the Arrhenius equation:

$$
\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{\mathrm{a}}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

Thus,

$$
\begin{aligned}
& \ln \left(\frac{0.248 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}}{0.208 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}}\right)=\frac{E_{\mathrm{a}}}{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)}\left(\frac{1}{(37+273) \mathrm{K}}-\frac{1}{(40+273) \mathrm{K}}\right) \\
& E_{\mathrm{a}}=47300 \mathrm{~J} \mathrm{~mol}^{-1}=47.3 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

The " A " factor can be determined using k and $E_{\text {a }}$ at either temperature using the Arrhenius equation:

$$
k=A \mathrm{e}^{-E_{\mathbf{a}} / R T}
$$

$$
\text { At } \mathrm{T}=37^{\circ} \mathrm{C}, k=0.208 \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1},
$$

$$
0.208 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}=A \times\left(\mathrm{e}^{-47300 /(8.314 \times(37+273))}\right.
$$

$$
A=1.94 \times 10^{7} \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~s} \mathrm{~s}^{-1} \quad \text { (note that " } A \text { " has the same units as } k \text {) }
$$

(a) As the second reaction is slow, it is rate determining. From the mechanism, the rate of this step is given by:

$$
\text { rate }=k_{2}\left[\mathrm{O}_{3}\right][\mathrm{O}]
$$

As O is a highly reactive intermediate, its concentration cannot be included in the rate equation which is to be experimental tested. As the first step is fast, the equilibrium between O_{3} and $\mathrm{O}_{2}+\mathrm{O}$ will be set up rapidly and maintained for most of the reaction. For an equilibrium,
rate forward reaction = rate backward reaction

$$
k_{1}\left[\mathrm{O}_{3}\right]=k_{-1}\left[\mathrm{O}_{2}\right][\mathrm{O}] \text { or }[\mathrm{O}]=\frac{k_{1}}{k_{-1}} \frac{\left[\mathrm{O}_{3}\right]}{\left[\mathrm{O}_{2}\right]}
$$

Hence,

$$
\begin{aligned}
\text { rate } & =k_{2}\left[\mathrm{O}_{3}\right][\mathrm{O}] \\
& =k_{2}\left[\mathrm{O}_{3}\right] \times \frac{k_{1}}{k_{-1}} \frac{\left[\mathrm{O}_{3}\right]}{\left[\mathrm{O}_{2}\right]}=\frac{k_{1} k_{2}}{k_{-1}} \frac{\left[\mathrm{O}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]}=k \frac{\left[\mathrm{O}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]} \text { where } k=\frac{k_{1} k_{2}}{k_{-1}}
\end{aligned}
$$

(b) The rate determining step (step 2) involves the reaction of one molecule of O_{2} with one atom of O . The molecularity is thus two: a bimolecular reaction.

