Questions $1 \& 2$ refer to the solubility of lead chromate, PbCrO_{4} :

$$
\mathrm{PbCrO}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})
$$

1. The $K_{\text {sp }}$ for PbCrO_{4} is 2.0×10^{-16} at $25^{\circ} \mathrm{C}$. What is the solubility of PbCrO_{4} in $\mathrm{mol} \mathrm{L}^{-1}$?
a) 1.4×10^{-8}
b) 2.8×10^{-8}
c) 2.0×10^{-16}
d) 7.1×10^{7}
e) 5.0×10^{15}
2. If 5.0 mL of $1.0 \times 10^{-5} \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is added to 5.0 mL of a solution of $1.0 \times 10^{-10} \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$, which statement is correct?
a) The ionic product is 1.0×10^{-15} and $\mathrm{PbCrO}_{4}(\mathrm{~s})$ precipitates.
b) The ionic product is 2.5×10^{-16} and $\mathrm{PbCrO}_{4}(\mathrm{~s})$ does not precipitate.
c) The ionic product is 1.0×10^{-15} and $\mathrm{PbCrO}_{4}(\mathrm{~s})$ does not precipitate.
d) The ionic product is 2.5×10^{-16} and $\mathrm{PbCrO}_{4}(\mathrm{~s})$ precipitates.
e) none of the above
3. What is the electronic configuration of Mn^{2+} ?
a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{1}$
b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{2}$
c) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}$
d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$
e) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{9}$
4. What is the systematic name for the coordination compound, $\mathrm{K}_{2}\left[\mathrm{Mn}\left(\mathrm{OH}_{2}\right)_{2}(\mathrm{CN})_{4}\right]$?
a) potassium tetracyanidodiaquamanganate (III)
b) potassium tetracyanidodiaquamanganate (II)
c) potassium diaquatetracyanidomanganate (III)
d) dipotassium diaquatetracyanidomanganate (II)
e) potassium diaquatetracyanidomanganate (II)
5. The $K_{\text {sp }}$ for silver chloride is 1.8×10^{-10} at $25^{\circ} \mathrm{C}$. What is the solubility of silver chloride (in $\mathrm{mol} \mathrm{L}^{-1}$) in 0.025 M tin(IV) chloride solution?
a) 8.5×10^{-5}
b) 6.7×10^{-8}
c) 7.2×10^{-9}
d) 1.8×10^{-9}
e) 1.3×10^{-5}
6. What is the concentration of $\mathrm{Zn}^{2+}(\mathrm{aq})$ ions in the solution made by adding water to zinc nitrate (0.10 mol) and ammonia (3.0 mol) so that the final volume of solution is 1.5 L ?
The $K_{\text {stab }}$ of $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is 7.8×10^{8}
a) $4.9 \times 10^{-11} \mathrm{M}$
b) $9.5 \times 10^{-12} \mathrm{M}$
c) $6.1 \times 10^{-12} \mathrm{M}$
d) $2.8 \times 10^{-12} \mathrm{M}$
e) $2.3 \times 10^{-13} \mathrm{M}$
7. How many different stereoisomers (i.e. geometrical and optical isomers) of the complex $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ are possible? en = ethane-1,2-diamine $=$ ethylenediamine $=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
a) 1
b) 2
c) 3
d) 4
e) 5
8. Consider the following galvanic cell and standard reduction potentials:

$$
\begin{array}{ll}
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{~s}) & E^{0}=0.80 \mathrm{~V} \\
\mathrm{~Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{~s}) & E^{0}=-0.13 \mathrm{~V}
\end{array}
$$

Which one of the following statements is TRUE?
a) The cell on the left containing $\mathrm{Ag}^{+}(\mathrm{aq})$ is the anode.
b) The initial reading on the voltmeter would be 0.67 V .
c) Oxidation occurs in the cell on the right containing $\mathrm{Pb}^{2+}(\mathrm{aq})$.
d) Negative charges will flow through the salt bridge from right to left.
e) The silver electrode dissolves as the reaction proceeds.
9. Consider the following equation. Relevant standard reduction potentials are given in Q8.

$$
2 \mathrm{Ag}^{+}+\mathrm{Pb} \rightleftharpoons 2 \mathrm{Ag}+\mathrm{Pb}^{2+}
$$

Which of the following is nearest to the equilibrium constant, K, at 298 K for this reaction?
a) 9.8×10^{5}
b) 8.6×10^{6}
c) 5.4×10^{15}
d) 1.1×10^{22}
e) 2.9×10^{31}
10. How much gold is deposited in 4.00 hours by the electrolysis of a solution of $\mathrm{Na}\left[\mathrm{AuCl}_{4}\right]$ by a constant current of 0.37 A ?
a) 10.9 g
b) 5.44 g
c) 3.63 g
d) 2.72 g
e) 2.18 g

Correct answers: $\quad 1 \mathrm{~A}, 2 \mathrm{D}, 3 \mathrm{D}, 4 \mathrm{E}, 5 \mathrm{D}, 6 \mathrm{~B}, 7 \mathrm{~B}, 8 \mathrm{C}, 9 \mathrm{E}, 10 \mathrm{C}$

Questions $1 \& 2$ refer to the solubility of iron(II) phosphate, $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$:

$$
\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{PO}_{4}^{3-}(\mathrm{aq})
$$

1. The $K_{\text {sp }}$ for $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ is 1.0×10^{-36} at $25^{\circ} \mathrm{C}$. What is the solubility of $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in $\mathrm{mol} \mathrm{L}^{-1}$?
a) 2.5×10^{-8}
b) 3.1×10^{-8}
c) 6.3×10^{-8}
d) 1.0×10^{-7}
e) 4.0×10^{-7}
2. If 25.0 mL of $2.0 \times 10^{-5} \mathrm{M} \mathrm{FeSO}_{4}$ is added to 25.0 mL of a solution of $1.0 \times 10^{-10} \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$, which statement is correct?
a) The ionic product is 8.0×10^{-35} and $\mathrm{Fe} 3\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ precipitates.
b) The ionic product is 2.5×10^{-36} and $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ precipitates.
c) The ionic product is 8.0×10^{-35} and $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ does not precipitate.
d) The ionic product is 2.5×10^{-36} and $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$ does not precipitate.
e) none of the above
3. What is the electronic configuration of Mn^{4+} ?
a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{1}$
b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{2}$
c) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}$
d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$
e) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{9}$
4. What is the systematic name for the coordination compound, $\left[\mathrm{Mo}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{OH}_{2}\right)_{3}\right] \mathrm{Cl}_{3}$?
a) triaquatriamminemolybdenum(VI) trichloride
b) triaquatriamminemolybdenum(III) trichloride
c) triamminetriaquamolybdenum(III) trichloride
d) triaquatriamminemolybdenum(III) chloride
e) triamminetriaquamolybdenum(III) chloride
5. The $K_{\text {sp }}$ for barium sulfate is 1.1×10^{-10} at $25^{\circ} \mathrm{C}$. What is the solubility of barium sulfate (in $\mathrm{mol} \mathrm{L}^{-1}$) in 0.1 M iron(III) sulfate solution?
a) 1.1×10^{-10}
b) 2.2×10^{-10}
c) 3.7×10^{-10}
d) 5.5×10^{-10}
e) 1.0×10^{-5}
6. What is the concentration of $\mathrm{Co}^{2+}(\mathrm{aq})$ ions in the solution made by adding water to cobalt(II) nitrate $(0.50 \mathrm{~mol})$ and ethylenediamine $(3.0 \mathrm{~mol})$ so that the final volume of solution is 3.0 L ? The $K_{\text {stab }}$ of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{2+}$ is 1.0×10^{14}
a) $1.3 \times 10^{-14} \mathrm{M}$
b) $1.5 \times 10^{-15} \mathrm{M}$
c) $2.9 \times 10^{-15} \mathrm{M}$
d) $3.3 \times 10^{-15} \mathrm{M}$
e) $8.7 \times 10^{-16} \mathrm{M}$
7. How many different stereoisomers (i.e. geometrical and optical isomers) of the complex $[\mathrm{Co}(\mathrm{en}) \mathrm{BrCl}(\mathrm{CN}) \mathrm{F}]^{-}$are possible? en $=$ethylenediamine $=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
a) 4
b) 6
c) 8
d) 12
e) 16
8. Consider the following concentration cell.

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{~s}) \quad E^{0}=0.80 \mathrm{~V}
$$

Which one of the following statements is TRUE?
a) The electrode on the left containing $1 \mathrm{M} \mathrm{Ag}^{+}(\mathrm{aq})$ is the anode.
b) Equilibrium occurs when the $\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]$ in both cells is equal.
c) The initial reading on the voltmeter would be 0.80 V .
d) Negative charges will flow through the salt bridge from right to left.
e) Reduction occurs in the cell on the right containing $0.1 \mathrm{M} \mathrm{Ag}^{+}(\mathrm{aq})$.
9. Consider the following equation.

$$
\mathrm{Cr}+3 \mathrm{VO}_{2}^{+}+6 \mathrm{H}^{+} \rightleftharpoons \mathrm{Cr}^{3+}+3 \mathrm{VO}^{2+}+3 \mathrm{H}_{2} \mathrm{O} \quad E^{\circ}=1.74 \mathrm{~V}
$$

Which of the following is nearest to the equilibrium constant, K, at 300 K for this reaction?
a) 5.0×10^{87}
b) 1.9×10^{88}
c) 5.5×10^{55}
d) 1.7×10^{29}
e) 2.7×10^{29}
10. How much bismuth is deposited in 1.60 hours by the electrolysis of a solution of NaBiO_{3} by a constant current of 0.55 A ?
a) 6.86 g
b) 3.43 g
c) 2.29 g
d) 1.72 g
e) 1.37 g

