Questions 1 & 2 refer to the solubility of lead chromate, PbCrO4:

 $PbCrO_4(s) \rightleftharpoons Pb^{2+}(aq) + CrO_4^{2-}(aq)$

1. The K_{sp} for PbCrO₄ is 2.0×10^{-16} at 25 °C. What is the solubility of PbCrO₄ in mol L⁻¹?

a) 1.4×10^{-8} b) 2.8×10^{-8} c) 2.0×10^{-16} d) 7.1×10^{7} e) 5.0×10^{15}

- 2. If 5.0 mL of 1.0×10^{-5} M Pb(NO₃)₂ is added to 5.0 mL of a solution of 1.0×10^{-10} M K₂CrO₄, which statement is correct?
- a) The ionic product is 1.0×10^{-15} and PbCrO₄(s) precipitates.
- b) The ionic product is 2.5×10^{-16} and PbCrO₄(s) does not precipitate.
- c) The ionic product is 1.0×10^{-15} and PbCrO₄(s) does not precipitate.
- d) The ionic product is 2.5×10^{-16} and PbCrO₄(s) precipitates.
- e) none of the above
- 3. What is the electronic configuration of Mn^{2+} ?
- a) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$
- b) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^2$
- c) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$
- d) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$
- e) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^9$
- 4. What is the systematic name for the coordination compound, K₂[Mn(OH₂)₂(CN)₄]?
- a) potassium tetracyanidodiaquamanganate (III)
- b) potassium tetracyanidodiaquamanganate (II)
- c) potassium diaquatetracyanidomanganate (III)
- d) dipotassium diaquatetracyanidomanganate (II)
- e) potassium diaquatetracyanidomanganate (II)
- 5. The K_{sp} for silver chloride is 1.8×10^{-10} at 25 °C. What is the solubility of silver chloride (in mol L⁻¹) in 0.025 M tin(IV) chloride solution?

a)
$$8.5 \times 10^{-5}$$
 b) 6.7×10^{-8} c) 7.2×10^{-9} d) 1.8×10^{-9} e) 1.3×10^{-5}

- 6. What is the concentration of $Zn^{2+}(aq)$ ions in the solution made by adding water to zinc nitrate (0.10 mol) and ammonia (3.0 mol) so that the final volume of solution is 1.5 L? The K_{stab} of $[Zn(NH_3)_4]^{2+}$ is 7.8×10^8
- a) $4.9 \times 10^{-11} \text{ M}$
- b) $9.5 \times 10^{-12} \text{ M}$
- c) $6.1 \times 10^{-12} \text{ M}$
- d) $2.8 \times 10^{-12} \text{ M}$
- e) $2.3 \times 10^{-13} \text{ M}$
- 7. How many different stereoisomers (*i.e.* geometrical and optical isomers) of the complex $[Co(en)_3]^{3+}$ are possible? en = ethane-1,2-diamine = ethylenediamine = NH₂CH₂CH₂NH₂
- a) 1 b) 2 c) 3 d) 4 e) 5
- 8. Consider the following galvanic cell and standard reduction potentials:

Which one of the following statements is TRUE?

- a) The cell on the left containing $Ag^+(aq)$ is the anode.
- b) The initial reading on the voltmeter would be 0.67 V.
- c) Oxidation occurs in the cell on the right containing $Pb^{2+}(aq)$.
- d) Negative charges will flow through the salt bridge from right to left.
- e) The silver electrode dissolves as the reaction proceeds.
- 9. Consider the following equation. Relevant standard reduction potentials are given in Q8.

 $2Ag^+ + Pb \rightleftharpoons 2Ag + Pb^{2+}$

Which of the following is nearest to the equilibrium constant, *K*, at 298 K for this reaction?

a) 9.8×10^5 b) 8.6×10^6 c) 5.4×10^{15} d) 1.1×10^{22} e) 2.9×10^{31}

- 10. How much gold is deposited in 4.00 hours by the electrolysis of a solution of Na[AuCl4] by a constant current of 0.37A?
- a) 10.9 g b) 5.44 g c) 3.63 g d) 2.72 g e) 2.18 g

Correct answers: 1A, 2D, 3D, 4E, 5D, 6B, 7B, 8C, 9E, 10C

Sample Quiz 3 (ii)

Questions 1 & 2 refer to the solubility of iron(II) phosphate, Fe₃(PO₄)₂: $Fe_3(PO_4)_2(s) \rightleftharpoons 3Fe^{2+}(aq) + 2PO_4^{3-}(aq)$

1. The K_{sp} for Fe₃(PO₄)₂(s) is 1.0×10^{-36} at 25 °C. What is the solubility of Fe₃(PO₄)₂ in mol L⁻¹? a) 2.5×10^{-8} b) 3.1×10^{-8} c) 6.3×10^{-8} d) 1.0×10^{-7} e) 4.0×10^{-7}

- 2. If 25.0 mL of 2.0×10^{-5} M FeSO₄ is added to 25.0 mL of a solution of 1.0×10^{-10} M K₃PO₄, which statement is correct?
- a) The ionic product is 8.0×10^{-35} and Fe₃(PO₄)₂(s) precipitates.
- b) The ionic product is 2.5×10^{-36} and Fe₃(PO₄)₂(s) precipitates.
- c) The ionic product is 8.0×10^{-35} and Fe₃(PO₄)₂(s) does not precipitate.
- d) The ionic product is 2.5×10^{-36} and Fe₃(PO₄)₂(s) does not precipitate.
- e) none of the above
- 3. What is the electronic configuration of Mn^{4+} ?
- a) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$
- b) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^2$
- c) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$
- d) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$
- e) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^9$
- 4. What is the systematic name for the coordination compound, [Mo(NH₃)₃(OH₂)₃]Cl₃?
- a) triaquatriamminemolybdenum(VI) trichloride
- b) triaquatriamminemolybdenum(III) trichloride
- c) triamminetriaquamolybdenum(III) trichloride
- d) triaquatriamminemolybdenum(III) chloride
- e) triamminetriaquamolybdenum(III) chloride
- 5. The K_{sp} for barium sulfate is 1.1×10^{-10} at 25 °C. What is the solubility of barium sulfate (in mol L⁻¹) in 0.1 M iron(III) sulfate solution?

a) 1.1×10^{-10} b) 2.2×10^{-10} c) 3.7×10^{-10} d) 5.5×10^{-10} e) 1.0×10^{-5}

- 6. What is the concentration of $\text{Co}^{2+}(\text{aq})$ ions in the solution made by adding water to cobalt(II) nitrate (0.50 mol) and ethylenediamine (3.0 mol) so that the final volume of solution is 3.0 L? The K_{stab} of $[\text{Co}(\text{en})_3]^{2+}$ is 1.0×10^{14}
- a) $1.3 \times 10^{-14} \text{ M}$
- b) $1.5 \times 10^{-15} \text{ M}$
- c) $2.9 \times 10^{-15} \text{ M}$
- d) $3.3 \times 10^{-15} \text{ M}$
- e) $8.7 \times 10^{-16} \text{ M}$
- 7. How many different stereoisomers (*i.e.* geometrical and optical isomers) of the complex $[Co(en)BrCl(CN)F]^-$ are possible? en = ethylenediamine = NH₂CH₂CH₂NH₂
- a) 4 b) 6 c) 8 d) 12 e) 16
- 8. Consider the following concentration cell.

Which one of the following statements is TRUE?

- a) The electrode on the left containing 1 M $Ag^+(aq)$ is the anode.
- b) Equilibrium occurs when the $[Ag^+(aq)]$ in both cells is equal.
- c) The initial reading on the voltmeter would be 0.80 V.
- d) Negative charges will flow through the salt bridge from right to left.
- e) Reduction occurs in the cell on the right containing $0.1 \text{ M Ag}^+(aq)$.
- 9. Consider the following equation.

$$Cr + 3VO_2^+ + 6H^+ \rightleftharpoons Cr^{3+} + 3VO^{2+} + 3H_2O$$
 $E^\circ = 1.74 V$

Which of the following is nearest to the equilibrium constant, K, at 300 K for this reaction?

a) 5.0×10^{87} b) 1.9×10^{88} c) 5.5×10^{55} d) 1.7×10^{29} e) 2.7×10^{29}

- 10. How much bismuth is deposited in 1.60 hours by the electrolysis of a solution of NaBiO₃ by a constant current of 0.55A?
- a) 6.86 g b) 3.43 g c) 2.29 g d) 1.72 g e) 1.37 g

Correct answers: 1A, 2B, 3C, 4E, 5C, 6A, 7D, 8B, 9A, 10E