CHEM1612 Worksheet 1 - Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: Calorimetry

1. When ΔT is negative: i.e., when the temperature lowers.
2. $C=c \times M$ or $c=C / M$ where M is the molar mass.
3. $\Delta T=10 . \mathrm{K}$ (2 significant figures).
4. No. The temperature difference is the same in both units.
5. 420 J
6. Heating up water by the same amount as olive oil requires more energy.
7. It would take 0.31 J to heat up if pure. The necklace is not pure.

Model 2: Energy

1. (a)

(a) exothermic
(b) endothermic
"Thermic" = caused by heat.
2. Colder.
3. Negative.
4. Stronger in the products than in the reactants.
5.

(a) $\Delta H<0$ (i.e. negative)
(b) $\Delta H>0$ (i.e. positive)

- A mass of 1.250 g of benzoic acid $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ underwent combustion in a bomb calorimeter. benzoic acid is $-3226 \mathrm{~kJ} \mathrm{~mol}^{-1}$, what is the change in internal energy during this reaction?

The molar mass of benzoic acid is:

$$
(7 \times 12.01(\mathrm{C})+6 \times 1.008(\mathrm{H})+2 \times 16.00(\mathrm{O})) \mathrm{g} \mathrm{~mol}^{-1}=122.1 \mathrm{~g} \mathrm{~mol}^{-1}
$$

A mass of 1.250 g therefore corresponds to:

$$
\text { number of moles }=\frac{\text { mass }}{\text { molar mass }}=\frac{1.250 \mathrm{~g}}{122.1 \mathrm{~g} \mathrm{~mol}^{-1}}=0.0102 \mathrm{~mol}
$$

As 3226 kJ are released per mole, the change in internal change for this amount is:

$$
\Delta U=\left(-3226 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \times(0.0102 \mathrm{~mol})=-33.02 \mathrm{~kJ}
$$

```
Answer: - 33.02 kJ
```

Calculate the temperature change that should have occurred in the apparatus.
In a constant volume apparatus like a calorimeter, the change in internal energy is equal to the heat change, q_{V}. Using $q=C_{\mathrm{p}} \Delta T$, the temperature change is:

$$
\Delta T=(33.02 \mathrm{~kJ}) /\left(10.134 \mathrm{~kJ} \mathrm{~K}^{-1}\right)=3.258 \mathrm{~K}
$$

As the combustion reaction evolves heat, the temperature increases.
Answer: +3.258 K

CHEM1612
 2006-N-3
 November 2006

- The specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ and the specific heat capacity of copper is $0.39 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$. If the same amount of energy were applied to a 1.0 mol sample of each substance, both initially at $25^{\circ} \mathrm{C}$, which substance would get hotter? Show all working.

Using $q=C \times m \times \Delta T$, the temperature change for a substance of mass m and specific heat capacity \mathbf{C} when an amount of heat equal to q is supplied is given by:

$$
\Delta T=\frac{\mathbf{q}}{\mathbf{C \times m}}
$$

The atomic mass of copper is $\mathbf{6 3 . 5 5}$. Hence, the temperature change for 1.0 mol of copper is

$$
\Delta T(\text { copper })=\frac{q}{(0.39 \times 63.55)}=\frac{q}{24.8}{ }^{\circ} \mathrm{C}
$$

The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $(2 \times 1.008(\mathrm{H}))+\mathbf{1 6 . 0 0}(\mathrm{O})=18.016$. Hence, the temperature change for 1.0 mol of water is

$$
\Delta T(\text { water })=\frac{q}{(4.18 \times 18.016)}=\frac{q}{75.3}{ }^{\circ} \mathrm{C}
$$

Hence,

$$
\Delta \mathrm{T}(\text { copper })>\Delta \mathrm{T}(\text { water })
$$

- A 150.0 g block of iron metal is cooled by placing it in an insulated container with a 50.0 g block of ice at $0.0^{\circ} \mathrm{C}$. The ice melts, and when the system comes to equilibrium the temperature of the water is $78.0^{\circ} \mathrm{C}$. What was the original temperature (in ${ }^{\circ} \mathrm{C}$) of the iron?

Data: The specific heat capacity of liquid water is $4.184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$.
The specific heat capacity of solid iron is $0.450 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$.
The molar enthalpy of fusion of ice (water) is $6.007 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

The heat from the iron is used to melt the ice and to warm the water from $0.0^{\circ} \mathrm{C}$ to $78.0^{\circ} \mathrm{C}$.

The molar mass of $\mathrm{H}_{2} \mathrm{O}$ is $(2 \times 1.008(\mathrm{H})+16.00(\mathrm{O})) \mathrm{g} \mathrm{mol}^{-1}=18.02 \mathrm{~g} \mathrm{~mol}^{-1}$. Hence 50.0 g of ice corresponds to:

$$
\text { number of moles }=\text { mass } / \text { molar mass }=(50.0 \mathrm{~g}) /\left(18.02 \mathrm{~g} \mathrm{~mol}^{-1}\right)=2.775 \mathrm{~mol} .
$$

Hence the heat used to melt ice is:

$$
q_{1}=6.007 \mathrm{~kJ} \mathrm{~mol}^{-1} \times 2.775 \mathrm{~mol}=16.67 \mathrm{~kJ}=16670 \mathrm{~J}
$$

The heat used to warm 50.0 g water by $78.0^{\circ} \mathrm{C}$ is:

$$
q_{2}=m \times C \times \Delta T=(50.0 \mathrm{~g}) \times\left(4.184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}\right) \times(78.0 \mathrm{~K})=16320 \mathrm{~J}
$$

Overall, the heat transferred from the iron is:

$$
q=q_{1}+q_{2}=16670 \mathrm{~J}+16320 \mathrm{~J}=32990 \mathrm{~J}
$$

This heat is lost from 150.0 g of iron leading to it cooling by ΔT :

$$
\begin{aligned}
& q=m \times C \times \Delta T=(150.0 \mathrm{~g}) \times\left(0.450 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}\right) \times \Delta T=32990 \mathrm{~J} \\
& \Delta T=489 \mathrm{~K}=489{ }^{\circ} \mathrm{C}
\end{aligned}
$$

As the final temperature of the iron is $78.0^{\circ} \mathrm{C}$, its original temperature was $(78.0+489){ }^{\circ} \mathrm{C}=567^{\circ} \mathrm{C}$.

Answer: $567{ }^{\circ} \mathrm{C}$

Key to success: practice further by completing this week's tutorial homework
Key to even greater success: practice even further by completing this week's suggested exam questions

