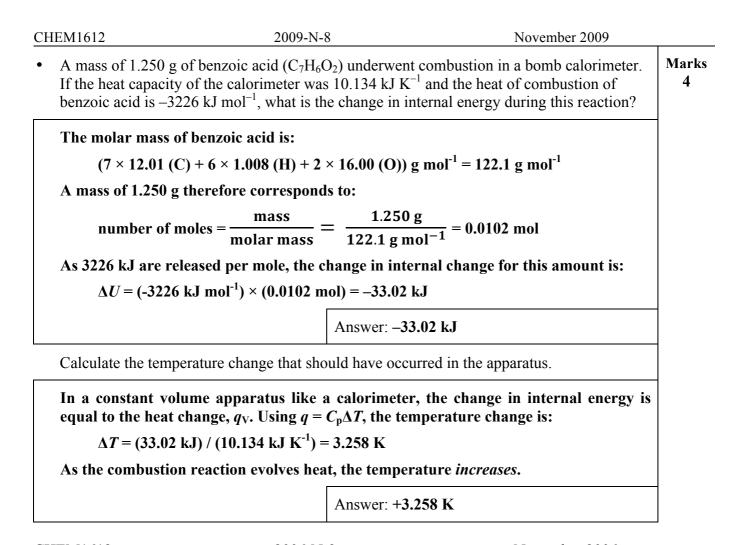

CHEM1612 Worksheet 1 – Answers to Critical Thinking Questions


The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: Calorimetry

- 1. When ΔT is negative: i.e., when the temperature lowers.
- 2. $C = c \times M$ or c = C / M where M is the molar mass.
- 3. $\Delta T = 10$. K (2 significant figures).
- 4. No. The temperature *difference* is the same in both units.
- 5. 420 J
- 6. Heating up water by the same amount as olive oil requires more energy.
- 7. It would take 0.31 J to heat up if pure. The necklace is not pure.

Model 2: Energy

HEM1612	2006-N-3	November 2006
is 0.39 J g^{-1} K ⁻¹ . If	apacity of water is 4.18 J g^{-1} K ⁻¹ and f the same amount of energy were aptially at 25 °C, which substance wou	
01	< ΔT, the temperature change for then an amount of heat equal to q	a substance of mass m and specific is supplied is given by:
$\Delta T = \frac{q}{C \times m}$ The atomic mass copper is	of copper is 63.55. Hence, the tem	perature change for 1.0 mol of
The molar mass o	$= \frac{q}{(0.39 \times 63.55)} = \frac{q}{24.8} \circ C$ of H ₂ O is (2 × 1.008 (H)) + 16.00 (C) or for 1.0 mol of water is	9) = 18.016. Hence, the
ΔT (water) =	$\frac{q}{(4.18 \times 18.016)} = \frac{q}{75.3}$ °C	
Hence,		
∆T (copper) >	≻∆T (water)	
	Answer: co	oper

CHEM1612	2008-N	N-3	November 2008		
a 50.0 g equilibri	g block of iron metal is cooled by block of ice at 0.0 °C. The ice m um the temperature of the water is ure (in °C) of the iron?	elts, and when the system co	omes to		
	specific heat capacity of liquid w The specific heat capacity of soli The molar enthalpy of fusion of i				
The hear to 78.0 °	t from the iron is used to melt t C.	the ice and to warm the wa	ter from 0.0 °C		
	ar mass of H ₂ O is (2 × 1.008 (H 0.0 g of ice corresponds to:	I) + 16.00 (O)) g mol ⁻¹ = 18.	02 g mol ⁻¹ .		
num	ber of moles = mass / molar m	ass = (50.0 g) / (18.02 g mol	$(1^{-1}) = 2.775$ mol.		
Hence th	ne heat used to melt ice is:				
$q_1 =$	6.007 kJ mol ⁻¹ × 2.775 mol = 10	6.67 kJ = 16670 J			
The hear	t used to warm 50.0 g water by	78.0 °C is:			
$q_2 = m \times C \times \Delta T = (50.0 \text{ g}) \times (4.184 \text{ J K}^{-1} \text{ g}^{-1}) \times (78.0 \text{ K}) = 16320 \text{ J}$					
Overall, the heat transferred from the iron is:					
$q = q_1 + q_2 = 16670 \text{ J} + 16320 \text{ J} = 32990 \text{ J}$					
This hea	This heat is lost from 150.0 g of iron leading to it cooling by ΔT :				
q = r	$n \times C \times \Delta T = (150.0 \text{ g}) \times (0.450 \text{ g})$	$J K^{-1} g^{-1}$) × $\Delta T = 32990 J$			
ΔT =	= 489 K = 489 °C				
	nal temperature of the iron is 7 89) °C = 567 °C.	78.0 °C, its original temper	ature was		
		Answer: 567 °C			

Key to success: practice further by completing this week's tutorial homework

Key to even greater success: practice even further by completing this week's suggested exam questions