1. Using $\Delta_{rxn} H^0 = \sum m \Delta_f H^0$ (products) $-\sum n \Delta_f H^0$ (reactants),

$$\Delta_{\rm rxn} H^{0} = [\Delta_{\rm f} H^{0} (C_{2} H_{2}(g) + \Delta_{\rm f} H^{0} (Ca(OH)_{2}(s)] - [\Delta_{\rm f} H^{0} (CaC_{2}(s)) + 2\Delta_{\rm f} H^{0} (H_{2}O(l)]$$

=[(+227) + (-986)] - [(-60) + (2 × -285)]
= -129 kJ mol⁻¹

The molar mass of CaC₂(s) is 40.08 (Ca) + 2 × 12.01 (C) = 64.1 g mol⁻¹

Hence, 10.0 g corresponds to $\frac{\text{mass}}{\text{molar mass}} = \frac{10.0 \text{ g}}{64.1 \text{ g mol}^{-1}} = 0.156 \text{ mol}$

As 1 mol releases 129 kJ mol⁻¹, this amount will give rise to an enthalpy change of:

$$\Delta_{\rm rxn} H^{\circ} = (-129 \text{ kJ mol}^{-1}) \times (0.156 \text{ mol}) = -20.1 \text{ kJ}$$

2. (a)
$$CH_3(CH_2)_{14}COOH + 23O_2 \rightarrow 16CO_2 + 16H_2O$$

(b) Using $\Delta_{rxn} H^0 = \sum m \Delta_f H^0$ (products) $-\sum n \Delta_f H^0$ (reactants):

 $\Delta_{\text{comb}} H^{0} = [16 \times \Delta_{\text{f}} H^{0}(\text{CO}_{2}) + 16 \times \Delta_{\text{f}} H^{0}(\text{H}_{2}\text{O})] - [\Delta_{\text{f}} H^{0}(\text{palmitic acid})]$

as $\Delta_f H^0(O_2) = 0$ for the formation of an element in its standard state.

As the combustion is an exothermic process, $\Delta_{comb} H^0 = -9980 \text{ kJ mol}^{-1}$. Therefore:

$$[16 \times -393.5 + 16 \times -285] - [\Delta_{\rm f} H^{0} (\text{palmitic acid})] = -9980 \,\text{kJ mol}^{-1}$$

or

 $\Delta_{\rm f} H^0$ (palmitic acid) = -889 kJ mol⁻¹

(c) $CH_3(CH_2)_{14}COOH \equiv C_{16}H_{32}O_2$. The molar mass of palmitic acid is:

molar mass = 16×12.01 (C) + 32×1.008 (H) + 2×16.00 (O) = 256.416 g mol⁻¹

So,

$$\Delta_{\text{comb}}H = -9980 \text{ kJ mol}^{-1} \text{ or } \frac{-9980 \text{ kJ mol}^{-1}}{256.416 \text{ g mol}^{-1}} = -38.9 \text{ kJ g}^{-1}$$

3. (a) The combustion of methyl stearate follows the equation:

$$CH_{3}(CH_{2})_{16}COOCH_{3} + \frac{55}{2}O_{2} \rightarrow 19CO_{2}(g) + 19H_{2}O(l)$$

As $\Delta_{rxn} H^{0} = \sum m\Delta_{f} H^{0}(products) - \sum n\Delta_{f} H^{0}(reactants)$ and

 $\Delta_f H^0(O_2(g))$ is zero, the heat of combustion is

$$\Delta_{rxn}H^{\circ} = [19\Delta_{f}H^{\circ}(CO_{2}(g)) + 19\Delta_{f}H^{\circ}(H_{2}O(l))] - [\Delta_{f}H^{\circ}(CH_{3}(CH_{2})_{16}COOCH_{3})]$$

As $\Delta_{f}H^{\circ}(CO_{2}(g)) = -393.5 \text{ kJ mol}^{-1}$, $\Delta_{f}H^{\circ}(H_{2}O(I)) = -285 \text{ kJ mol}^{-1}$ and $\Delta_{f}H^{\circ}(H_{2}O(I)) = -285 \text{ kJ mol}^{-1}$ $CH_3(CH_2)_{16}COOCH_3) = -945.6 \text{ kJ mol}^{-1}$:

 $\Delta_{rxn}H^{\circ} = ([19 \times -393.5 + 19 \times -285] - [-945.6]) \text{ kJ mol}^{-1}$ $= -11900 \text{ kJ mol}^{-1}$

The molecular weight of CH₃(CH₂)₁₆COOCH₃ is: **(b)**

$$(19 \times 12.01 \text{ (C)} + 38 \times 1.008 \text{ (H)} + 2 \times 16.00 \text{ (O)}) \text{ g mol}^{-1}$$

= 298.5 g mol^{-1}

Using $\Delta_{rxn}H^{\circ} = -11946$ kJ mol⁻¹ from (a), the nett calorific value is:

nett calorific value = $\frac{11946 \text{ kJ mol}^{-1}}{298.5 \text{ g mol}^{-1}} = 40.0 \text{ kJ g}^{-1}$

This value is *slightly* less than for conventional diesel.

For a reaction to be spontaneous requires $\Delta G^0 < 0$, i.e. $\Delta H^0 - T\Delta S^0 < 0$. 4.

For the reaction given, ΔH^0 is positive, which would tend to make ΔG^0 positive. To counteract this, entropy must increase, ΔS^0 must be positive (which it is) and $T\Lambda S^0$ must exceed ΛH^0 .

Thus,
$$T\Delta S^0 > \Delta H^0$$
 and $T > \Delta H^0 / \Delta S^0 = 5.5 \times 10^3$ J mol⁻¹ / 25 J K⁻¹ mol⁻¹ = 220K.

An endothermic reaction is favoured by increasing the temperature (Le Chatelier's principle).

5. Freezing water corresponds to the process:

 $H_2O(l) \rightarrow H_2O(s)$

At -10 °C, water freezes spontaneously to give ice so $\Delta G < 0$.

The liquid \rightarrow solid process involves the molecules becoming more ordered so $\Delta S < 0$.

The liquid \rightarrow solid process involves the formation of intermolecular H-bonds between the water molecules so $\Delta H < 0$.

Water freezes when $\Delta G^0 < 0$, i.e. $\Delta H^0 - T\Delta S^0 < 0$.

 ΔS^0 is negative, which would tend to make ΔG^0 positive.

To counteract this, the enthalpy change must be negative (which it is) and ΔH^0 must be more negative than $T\Delta S^0$.

Thus, $|T\Delta S^0| < |\Delta H^0|$ and $T < |\Delta H^0| / |\Delta S^0|$