## CHEM1612 Worksheet 2 - Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

## Model 1: Forming a Compound from its Elements

1. 

(a)
$\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
(b) $\quad \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
2. The enthalpy change when an element in its standard state is formed from the element in its standard state is zero. For example, for $\mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$, the enthalpy of formation corresponds to the 'reactions':

$$
\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g}) \quad \text { and } \quad \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})
$$

Neither process does anything so the enthalpy change must be zero.

## Model 2: Calculating the Enthalpy of Reaction using $\Delta_{\mathrm{f}} \boldsymbol{H}$

1. $\Delta_{\mathrm{rxn}} H^{\circ}=-892 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2. $\Delta_{\mathrm{rxn}} H^{\circ}=-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3. $\Delta_{\mathrm{rxn}} H^{\circ}=-57 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4. The reaction involves making a $\mathrm{N}-\mathrm{N}$ bond, with no bonds being broken. It is exothermic.
5. $\Delta_{\mathrm{rxn}} H^{\circ}=-28.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. This value is exactly half that for reaction A.
6. $\quad \Delta_{\mathrm{rxn}} H^{\circ}=+57 \mathrm{~kJ} \mathrm{~mol}^{-1}$. This value is equal to -1 times the value for reaction A and -2 times the value for reaction B.
7. Reaction C involves breaking a $\mathrm{N}-\mathrm{N}$ bond, with no bonds being made. It is endothermic.
8. $\Delta_{\mathrm{rxn}} H^{\circ}=+28.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. It is $1 / 2$ the value for reaction C since reaction D is $1 / 2$ of reaction C .

Key to success: practice further by completing this week's tutorial homework
Key to even greater success: practice even further by completing this week's suggested exam questions

- Nitroglycerine, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}$, decomposes to form $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ according to the following equation.

$$
4 \mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{l}) \rightarrow 6 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+12 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

If 15.6 kJ of energy is evolved by the decomposition of 2.50 g of nitroglycerine at 1 atm and 25 ${ }^{\circ} \mathrm{C}$, calculate the enthalpy change, $\Delta H^{\circ}$, for the decomposition of 1.00 mol of this compound under standard conditions.

The molar mass of $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}$ is:

$$
\begin{aligned}
(3 \times 12.01(\mathrm{C}) & +5 \times 1.008(\mathrm{H})+3 \times 14.01(\mathrm{~N})+9 \times 16.00(\mathrm{O})) \mathrm{g} \mathrm{~mol}^{-1} \\
= & 227.1 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

2.50 g therefore corresponds to:

$$
\text { number of moles }=\frac{\text { mass }}{\text { molar mass }}=\frac{2.50 \mathrm{~g}}{227.1 \mathrm{~g} \mathrm{~mol}^{-1}}=0.0110 \mathrm{~mol}
$$

As this amount leads to 15.6 kJ being evolved, the enthalpy change for the decomposition of 1.00 mol is:

$$
\Delta H^{\circ}=15.6 \mathrm{~kJ} / 0.0110 \mathrm{~mol}=-1420 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$$
\text { Answer: } \mathbf{- 1 4 2 0} \mathbf{k J ~ m o l}^{-1}
$$

Hence calculate the enthalpy of formation of nitroglycerine under standard conditions.

Data: |  |  | $\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ |
| :---: | :---: | :---: |
|  | $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ | -242 |
|  | $\mathrm{CO}_{2}(\mathrm{~g})$ | -394 |

The balanced reaction above is for the decomposition of $4 \mathbf{~ m o l}$ of nitroglycerine. Hence, $\Delta_{\mathrm{rxn}} H^{\circ}=4 \times \mathbf{- 1 4 2 0} \mathrm{kJ} \mathrm{mol}^{-1}=-5680 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Using $\Delta_{\mathrm{rxn}} H^{\circ}=\Sigma m \Delta_{\mathrm{f}} H^{\circ}$ (products) $-\Sigma n \Delta_{\mathrm{f}} H^{\circ}$ (reactants), the enthalpy change for the above reaction is:

$$
\Delta_{\mathrm{rxn}} H^{\circ}=\left[12 \Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)+10 \Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right)\right]-\left[4 \Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{l})\right)\right]
$$

## Hence:

$$
\begin{aligned}
& -5680 \mathrm{~kJ} \mathrm{~mol}^{-1}=\left[(12 \times-394+10 \times-242) \mathrm{kJ} \mathrm{~mol}^{-1}\right]-\left[4 \Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{l})\right)\right] \\
& \Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{l})\right)=-367 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\text { Answer: - } \mathbf{3 6 7} \mathbf{~ k J ~ m o l}{ }^{-1}
$$

- Ammonium perchlorate mixed with powdered aluminium powers the space shuttle booster rockets:

$$
2 \mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Given the following thermochemical data, how much heat would be released per gram of $\mathrm{Al}(\mathrm{s})$ ?

$$
\begin{array}{ll}
\Delta H_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)=-285.1 \mathrm{~kJ} \mathrm{~mol}^{-1} & \Delta H_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})\right)=-1669.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta H_{\mathrm{f}}^{\mathrm{o}}(\mathrm{NO}(\mathrm{~g}))=90.4 \mathrm{~kJ} \mathrm{~mol}^{-1} & \Delta H_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s})\right)=-290.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta H_{\mathrm{f}}^{\mathrm{o}}(\mathrm{HCl}(\mathrm{~g}))=-92.3 \mathrm{~kJ} \mathrm{~mol}^{-1} & \Delta H_{\text {vap }}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}\right)=44.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Using $\Delta_{\mathrm{rxn}} \mathrm{H}^{\mathbf{0}}=\sum \mathrm{m} \Delta_{\mathrm{f}} \mathrm{H}^{\mathbf{0}}($ products $)-\sum \mathrm{n} \Delta_{\mathrm{f}} \mathrm{H}^{\mathbf{0}}($ reactants $)$ :

$$
\begin{aligned}
\Delta_{\mathrm{rxn}} \mathrm{H}^{0}= & \left.\sum \Delta_{\mathrm{f}} \mathrm{H}^{\circ}\left(\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})\right)+2 \Delta_{\mathrm{f}} \mathrm{H}^{\circ}(\mathrm{HCl}(\mathrm{~g}))+2 \Delta_{\mathrm{f}} \mathrm{H}^{\circ} \mathrm{NO}(\mathrm{~g})\right)+3 \Delta_{\mathrm{f}} \mathrm{H}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right) \\
& -\sum 2 \Delta_{\mathrm{f}} \mathrm{H}^{\circ}\left(\mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s})\right)+2 \Delta_{\mathrm{f}} \mathrm{H}^{\circ}(\mathrm{Al}(\mathrm{~s})) \\
= & {[(-1669.8)+2(-92.3)+2(90.4)+3(-285.1+44.1)]-[2(-290.6)+2(0)] } \\
= & -1815.4 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

In this calculation, $\Delta_{f} H^{\circ}(\mathrm{Al}(\mathrm{s}))=0$ for an element in its standard state and $\Delta_{f} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)=\Delta_{\mathrm{f}} \mathrm{H}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right)+\Delta_{\text {vap }} \mathrm{H}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)$ have been used.

As written, this enthalpy change is for the reaction of two moles of $\mathrm{Al}(\mathrm{s})$. Therefore, per mole of $\mathrm{Al}(\mathrm{s}), \Delta \mathrm{H}^{\circ}=1 / 2 \times-1815.4 \mathrm{~kJ} \mathrm{~mol}^{-1}=907.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

As the atomic mass of aluminium is $26.98 \mathrm{~g} \mathrm{~mol}^{-1}$, the heat released per gram of Al is:

$$
q=\frac{-907.7 \mathrm{~kJ} \mathrm{~mol}^{-1}}{26.98 \mathrm{~g} \mathrm{~mol}^{-1}}=33.64 \mathrm{~kJ} \mathrm{~g}^{-1}
$$

- The thermite reaction is written below. Show that the heat released in this reaction is sufficient for the iron to be produced as molten metal.

$$
2 \mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{l})
$$

Assume that the values in the table are independent of temperature.

| Substance | Enthalpy of <br> formation, $\Delta_{\mathrm{f}}$ <br> $\mathrm{kJ} \mathrm{mol}^{\mathrm{o}}$ | Molar heat <br> capacity, $C_{\mathrm{p}}$ <br> $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ | Melting <br> point <br> ${ }^{\circ} \mathrm{C}$ | Enthalpy <br> of fusion <br> $\mathrm{kJ} \mathrm{mol}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: |
| Al | 0 | 24 | 660 | 11 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | -1676 | 79 | 2054 | 109 |
| Fe | 0 | 25 | 1535 | 14 |
| $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | -824 | 104 | 1565 | 138 |

Assume 1 mol of reactants at initial temperature of $25^{\circ} \mathrm{C}$. Need to show that $\Delta \boldsymbol{H}$ for the reaction is greater than the amount of energy required to melt 2 mol of $\mathrm{Fe}(\mathrm{s})$ and heat all the products ( 2 mol of $\mathrm{Fe}(\mathrm{s})+1 \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ ) to the melting point of Fe .

$$
\begin{aligned}
\Delta H & =\sum \Delta_{\mathrm{f}} H(\text { products })-\sum \Delta_{\mathrm{f}} H(\text { reactants }) \\
& =\Delta_{\mathrm{f}} H\left(\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})\right)+2 \Delta_{\mathrm{f}} H(\mathrm{Fe}(\mathrm{~s}))-\left(2 \Delta_{\mathrm{f}} H(\mathrm{Al}(\mathrm{~s}))+\Delta_{\mathrm{f}} H\left(\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})\right)\right) \\
& =[(-1676+2 \times 0)-(-824+2 \times 0)] \mathrm{kJ} \mathrm{~mol}^{-1} \\
& =-852 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

$\Delta H$ to heat 2 mol of $\mathrm{Fe}(\mathrm{s})$ to its melting point

$$
\begin{aligned}
\Delta H & =n_{\mathrm{Fe}(\mathrm{~s})} \times C_{\mathrm{p}}(\mathrm{Fe}(\mathrm{~s})) \times \Delta T \\
& =(2 \mathrm{~mol}) \times\left(25 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(1535-25) \mathrm{K}=75.5 \mathrm{~kJ}
\end{aligned}
$$

$\Delta H$ to heat 1 mol of $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ to melting point of $\mathrm{Fe}(\mathrm{s})$

$$
\begin{aligned}
\Delta H & =n_{\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})} \times C_{\mathrm{p}}\left(\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})\right) \times \Delta T \\
& =(1 \mathrm{~mol}) \times\left(79 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(1535-25) \mathrm{K}=119 \mathrm{~kJ}
\end{aligned}
$$

$\Delta H$ to melt 2 mol of $\mathrm{Fe}(\mathrm{s})$

$$
\Delta H=2 \times \Delta_{\mathrm{fus}} H^{\circ}=(2 \mathrm{~mol}) \times\left(14 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)=28 \mathrm{~kJ}
$$

Total energy required to melt the iron $=(75.5+119+28) \mathbf{k J}=+\mathbf{2 2 2} .5 \mathrm{~kJ}$.
The energy generated by the reaction is more than enough to melt the iron.

