Worksheet 3 - Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: Two charged Particles Separated by a Distance r

1. $\quad V$ gets smaller in magnitude.
2. $\quad V \rightarrow 0$ as $r \rightarrow \infty$.
3. $\quad V>0$: a repulsive interaction.
4. $\quad q_{\text {proton }}=+e$
5. $\quad V<0$: an attractive interaction.
6. The potential is negative and decreases in magnitude as r increases until it reaches zero at ionization.
7.

$$
\begin{array}{ccc}
k \times \frac{(+2) \times(-1) e^{2}}{r}+k \times \frac{(+2) \times(-1) e^{2}}{r}+k \times \frac{(-1) \times(-1) e^{2}}{2 r} \\
\text { electron 1 with } \\
\text { nucleus } & \text { electron 2 with } & \text { nucleus } \\
\text { electron 1 with } \\
\text { electron 2 }
\end{array}
$$

$V=-\frac{7 k e^{2}}{2 r}$: overall attractive.

Model 2: Electron Energy

1.

n	$E_{n}(\mathrm{~J})$	$r_{\text {average }}(\mathrm{m})$
1	-218×10^{-20}	0.529×10^{-10}
2	-54.5×10^{-20}	2.12×10^{-10}
3	-24.2×10^{-20}	4.76×10^{-10}
4	-13.6×10^{-20}	8.46×10^{-10}
5	-8.72×10^{-20}	13.2×10^{-10}
6	-6.06×10^{-20}	19.0×10^{-10}

2. See left hand graph below.
3. The energy of the levels gets smaller in magnitude and they get closer together as n increases. The average size of the orbit gets rapidly larger as n increases.
4. The energy of the electron tends to zero and the orbit tends to infinity when n becomes very large.

Model 3: Atomic Spectroscopy

1. Shown as red lines on the left hand graph below.
2. $n=4 \rightarrow n=3: \Delta E=-10.6 \times 10^{-20} \mathrm{~J} ; E_{\text {photon }}=-\Delta E=+10.6 \times 10^{-20} \mathrm{~J}$ or 0.66 eV $n=4 \rightarrow n=2: \Delta E=-40.9 \times 10^{-20} \mathrm{~J} ; E_{\text {photon }}=-\Delta E=+40.9 \times 10^{-20} \mathrm{~J}$ or 2.55 eV $n=4 \rightarrow n=1: \Delta E=-204 \times 10^{-20} \mathrm{~J} ; E_{\text {photon }}=-\Delta E=+204 \times 10^{-20} \mathrm{~J}$ or 12.8 eV
3. (a) $n=2 \rightarrow n=5$
(b) $n=3 \rightarrow n=7$

Workshop: Unit conversions for electromagnetic radiation (photons)

1. $\quad E$ is the energy $(\mathrm{J}), h$ is Planck's constant $(\mathrm{J} \mathrm{s}), v$ is the frequency $\left(\mathrm{Hz} \mathrm{or} \mathrm{s}^{-1}\right), c$ is the speed of light $\left(\mathrm{m} \mathrm{s}^{-1}\right)$ and λ is the wavelength (m).
2. (a) $6.93 \times 10^{16} \mathrm{~Hz}$
(b) $1.28 \times 10^{18} \mathrm{~Hz}$
(c) $6.56 \times 10^{13} \mathrm{~Hz}$
3. (a) $6.29 \times 10^{-2} \mathrm{~m}$
(b) $1.07 \times 10^{6} \mathrm{~cm}$
(c) $5.0 \times 10^{9} \mathrm{~mm}$
4. (a) $7.80 \times 10^{-18} \mathrm{~J}^{23}$ photon ${ }^{-1}$ or $4690 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $1.6855 \times 10^{-23} \mathrm{~J}^{\text {photon }}$ or $0.010150 \mathrm{~kJ} \mathrm{~mol}^{-1}$

5 . (a) $\lambda=1.61 \times 10^{-7} \mathrm{~m}$ and $v=1.86 \times 10^{15} \mathrm{~Hz}$
(b) $\lambda=5.60 \times 10^{-7} \mathrm{~m}$ and $v=5.35 \times 10^{14} \mathrm{~Hz}$

Workshop: Unit conversion for wave-particles with rest mass

1. $\quad E$ is the energy $(J), m$ is the mass $(\mathrm{kg}), \mathrm{v}$ is the velocity $\left(\mathrm{m} \mathrm{s}^{-1}\right), \lambda$ is the wavelength (m) and h is Planck's constant (J s).
2. (a) $\lambda=1.45 \times 10^{-9} \mathrm{~m}$
(b) $\lambda=6.38 \times 10^{-9} \mathrm{~m}$
(c) $\lambda=4.41 \times 10^{-6} \mathrm{~m}$
3. (a) $E_{\text {kinetic }}=1.71 \times 10^{-20} \mathrm{~J}$
(b) $E_{\text {kinetic }}=1.12 \times 10^{-38} \mathrm{~J}$
4. $\quad E_{\text {kinetic }}=2.3 \times 10^{-20} \mathrm{~J}$

Energy levels of the \mathbf{H} atom

Atomic Spectrum of the H atom

The calculated transition energies are shown on the diagram on the right: this is how the spectrum arises.

