1. What is the decay product resulting from the emission of an alpha particle from ${ }_{85}^{210} \mathrm{At}$?
a) ${ }_{82}^{207} \mathrm{~Pb}$
b) ${ }_{86}^{210} \mathrm{Rn}$
c) ${ }_{83}^{206} \mathrm{Bi}$
d) ${ }_{81}^{206} \mathrm{Tl}$
e) ${ }_{85}^{206} \mathrm{At}$
2. Which nuclide is needed to balance the following nuclear reaction?

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow ?+{ }_{39}^{96} \mathrm{Y}+3{ }_{0}^{1} \mathrm{n}
$$

a) ${ }_{53}^{139} \mathrm{I}$
b) ${ }_{53}^{138} \mathrm{I}$
c) ${ }_{53}^{137} \mathrm{I}$
d) ${ }_{53}^{136} \mathrm{I}$
e) ${ }_{53}^{135} \mathrm{I}$
3. Only one of the following isotopes of strontium undergoes radioactive decay by β^{-}emission? Which one is it?
a) ${ }_{38}^{83} \mathrm{Sr}$
b) ${ }_{38}^{86} \mathrm{Sr}$
c) ${ }_{38}^{87} \mathrm{Sr}$
d) ${ }_{38}^{88} \mathrm{Sr}$
e) ${ }_{38}^{90} \mathrm{Sr}$
4. For which one of the following atoms or ions would the $2 s$ and $2 p$ orbitals have the same energy?
a) O^{2-}
b) H
c) He
d) Li^{+}
e) F^{6+}
5. Which of the following electron excitations of the hydrogen atom requires light of the shortest wavelength?
a) $n=2$ to $n=3$
b) $n=3$ to $n=4$
c) $n=4$ to $n=20$
d) $n=5$ to $n=100$
e) $n=4$ to $n=1000$
6. How many nodes does a $5 s$ atomic orbital have?
a) 0 planar nodes and 0 spherical nodes
b) 3 planar nodes and 2 spherical nodes
c) 1 planar node and 1 spherical node
d) 0 planar nodes and 4 spherical nodes
e) 2 planar nodes and 3 spherical nodes
7. The $1 s 3 p \rightarrow 1 s^{2}$ transition of He is at 54 nm . Which of the following statements is correct?
a) The $1 s 2 p \rightarrow 1 s^{2}$ transition of He is at a longer wavelength than 54 nm .
b) The $1 s 2 p \rightarrow 1 s^{2}$ transition of He is at a shorter wavelength than 54 nm .
c) The $1 s 2 p \rightarrow 1 s^{2}$ transition of He is also at 54 nm .
d) No deduction about the $1 s 2 p \rightarrow 1 s^{2}$ transition of He can be made.
8. The half-life of ${ }^{14} \mathrm{C}$ is 5730 years. Which of the following can be usefully dated using ${ }^{14} \mathrm{C}$ dating methods?
a) dinosaur bones (70 million years old)
b) $15^{\text {th }}$ century paintings
c) rocks that are 2 billion years old
d) early human ancestor remains (approximately 2 million years old)
e) a corpse in a murder investigation (less than 2 years old)
9. Which one of the following sets of quantum numbers is valid?

	n	l	m_{1}	m_{s}
a)	3	1	0	0

b) $\begin{array}{lllll}1 & 1 & 0 & -1 / 2\end{array}$
c) $\begin{array}{llll}3 & 3 & -2 & +1 / 2\end{array}$
d) $\begin{array}{llll}1 & 1 & 1 & 0\end{array}$
e) $\begin{array}{llll}5 & 4 & 3\end{array}$
10. Reference: http://firstyear.chem.usyd.edu.au/LabManual/W5.pdf

When computed on a calculator, the algebraic expression $\frac{0.350 \mathrm{~kg} \times 141 \mathrm{~J}}{(0.921 \mathrm{~m}+68 \mathrm{~m})}$ has a value of 0.716037202 . Expressed to the appropriate number of significant figures, this is:
a) $0.7 \mathrm{~kg} \mathrm{~J} \mathrm{~m}^{-1}$
b) $0.71 \mathrm{~kg} \mathrm{~J} \mathrm{~m}^{-1}$
c) $0.72 \mathrm{~kg} \mathrm{~J} \mathrm{~m}^{-1}$
d) $0.716 \mathrm{~kg} \mathrm{~J} \mathrm{~m}^{-1}$
e) $0.71604 \mathrm{~kg} \mathrm{~J} \mathrm{~m}^{-1}$

Correct answers: $\quad 1 \mathrm{C}, 2 \mathrm{C}, 3 \mathrm{E}, 4 \mathrm{~B}, 5 \mathrm{~A}, 6 \mathrm{D}, 7 \mathrm{~A}, 8 \mathrm{~B}, 9 \mathrm{E}, 10 \mathrm{C}$

Chem1901/3

1. What is the decay product resulting from electron capture by the ${ }_{61}^{144} \mathrm{Pm}$ nuclide?
a) ${ }_{60}^{144} \mathrm{Pm}$
b) ${ }_{62}^{144} \mathrm{Pm}$
c) ${ }_{60}^{145} \mathrm{Nd}$
d) ${ }_{60}^{144} \mathrm{Nd}$
e) ${ }_{62}^{144} \mathrm{Sm}$
2. Which nuclide is needed to balance the following nuclear reaction?

$$
{ }_{92}^{233} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow ?+{ }_{42}^{101} \mathrm{Mo}+3{ }_{0}^{1} \mathrm{n}
$$

a) ${ }_{50}^{132} \mathrm{Sn}$
b) ${ }_{50}^{131} \mathrm{Sn}$
c) ${ }_{50}^{130} \mathrm{Sn}$
d) ${ }_{50}^{129} \mathrm{Sn}$
e) ${ }_{50}^{128} \mathrm{Sn}$
3. Only one of the following isotopes of gallium does not undergo radioactive decay via electron capture. Which one is it?
a) ${ }_{31}^{69} \mathrm{Ga}$
b) ${ }_{31}^{68} \mathrm{Ga}$
c) ${ }_{31}^{67} \mathrm{Ga}$
d) ${ }_{31}^{66} \mathrm{Ga}$
e) ${ }_{31}^{65} \mathrm{Ga}$
4. For which one of the following atoms or ions would the $2 s$ and $2 p$ orbitals have the same energy?
a) O^{2-}
b) H^{-}
c) He
d) Be^{2+}
e) N^{6+}
5. Which of the following electron excitations of the hydrogen atom requires light of the longest wavelength?
a) $n=2$ to $n=3$
b) $n=3$ to $n=4$
c) $n=4$ to $n=20$
d) $n=5$ to $n=100$
e) $n=4$ to $n=1000$
6. How many nodes does a $2 p$ atomic orbital have?
a) 0 planar nodes and 0 spherical nodes
b) 0 planar nodes and 1 spherical nodes
c) 1 planar nodes and 0 spherical nodes
d) 1 planar node and 1 spherical node
e) 2 planar nodes and 2 spherical nodes
7. The $1 s 3 p \rightarrow 1 s^{2}$ transition of He is at 54 nm . Which of the following statements is correct?
a) The $1 s 2 p \rightarrow 1 s^{2}$ transition of He is at a longer wavelength than 54 nm .
b) The $1 s 2 p \rightarrow 1 s^{2}$ transition of He is at a shorter wavelength than 54 nm .
c) The $1 s 2 p \rightarrow 1 s^{2}$ transition of He is also at 54 nm .
d) No deduction about the $1 s 2 p \rightarrow 1 s^{2}$ transition of He can be made.
8. The half-life of ${ }^{14} \mathrm{C}$ is 5730 years. Which of the following can be usefully dated using ${ }^{14} \mathrm{C}$ dating methods?
a) dinosaur bones (70 million years old)
b) $15^{\text {th }}$ century paintings
c) rocks that are 2 billion years old
d) early human ancestor remains (approximately 2 million years old)
e) a corpse in a murder investigation (less than 2 years old)
9. Which one of the following sets of quantum numbers is valid?

	n	l	m_{1}	m_{s}
a)	4	4	3	$+1 / 2$
b)	2	1	0	$-1 / 2$
c)	3	2	-2	+1
d)	1	1	1	0
e)	3	1	0	0

10. Reference: http://firstyear.chem.usyd.edu.au/LabManual/W5.pdf

When computed on a calculator, the algebraic expression $\frac{3.69 \mathrm{~kg} \times 30 \mathrm{~J}}{(87.1 \mathrm{~m}+98.5 \mathrm{~m})}$ has a
value of 0.596443966 . Expressed to the appropriate number of significant figures, this is:
a) $0.5 \mathrm{~kg} \mathrm{~J} \mathrm{~m}^{-1}$
b) $0.6 \mathrm{~kg} \mathrm{~J} \mathrm{~m}^{-1}$
c) $0.59 \mathrm{~kg} \mathrm{~J} \mathrm{~m}^{-1}$
d) $0.60 \mathrm{~kg} \mathrm{~J} \mathrm{~m}^{-1}$
e) $0.596 \mathrm{~kg} \mathrm{~J} \mathrm{~m}^{-1}$

Correct answers: $\quad 1 \mathrm{D}, 2 \mathrm{C}, 3 \mathrm{~A}, 4 \mathrm{E}, 5 \mathrm{D}, 6 \mathrm{C}, 7 \mathrm{~A}, ~ 8 \mathrm{~B}, 9 \mathrm{~B}, 10 \mathrm{D}$

