## Answers to Problem Sheet 2

1. The compound is $\mathbf{C}_{2} \mathbf{H}_{6} \mathbf{N}_{2}$.

Molar masses: $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} 58.042 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{C}_{4} \mathrm{H}_{10} 58.078 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2} 58.053 \mathrm{~g} \mathrm{~mol}^{-1}$
2.

butan-2-ol
(b)

( $E$ )-penta-1,3-diene

penta-1,4-diene
(c)

cyclopentane

pentane

acetic acid

methyl formate

Low resolution MS: molar mass $=72 \mathrm{~g} \mathrm{~mol}^{-1}$ $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$

IR: $\sim 1700 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathbf{O}$
Low resolution MS: molar mass $=74 \mathrm{~g} \mathrm{~mol}^{-1}$ ( $\mathrm{C}_{4} \mathrm{H}_{\mathbf{1 0}} \mathrm{O}$ )

IR: $\sim \mathbf{3 3 0 0} \mathrm{cm}^{-1}$ (broad) $\mathrm{O}-\mathrm{H}$

UV: conjugated double bonds leads to strong absorption

UV: double bonds are not conjugated so no strong absorption

Low resolution MS: molar mass $=70 \mathrm{~g} \mathrm{~mol}^{-1}$ $\left(\mathrm{C}_{5} \mathrm{H}_{10}\right)$

Low resolution MS: molar mass $=72 \mathrm{~g} \mathrm{~mol}^{-1}$ $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$

IR: $\sim 3300 \mathrm{~cm}^{-1}$ (very broad) $O-H, \sim 1700 \mathrm{~cm}^{-1}$ $\mathrm{C}=\mathbf{O}$

IR: $\sim 1700 \mathrm{~cm}^{-1} \mathrm{C}=\mathbf{O}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR could be used in all cases.
3. (a) A, B and C
(b) $\mathbf{E}$
(c) $\mathbf{D}$
(d) $\mathbf{2}$
(e) B and C
(f) $\mathbf{B}$

4. There are three sets of equivalent ${ }^{1} \mathbf{H}$ atoms bonded to carbon in paracetamol:

(A)

- (A) corresponds to the three equivalent ${ }^{1} \mathrm{H}$ on a $-\mathrm{CH}_{3}$ group. These are expected to have a chemical shift of $0.8-1.8 \mathrm{ppm}$. As it is due to three ${ }^{1} \mathrm{H}$, the signal will have a relative area of 3 .
- (B) corresponds to two equivalent ${ }^{1} \mathrm{H}$ on the ring. These are expected to have a chemical shift of $6-9 \mathrm{ppm}$. As it is due to two ${ }^{1} \mathrm{H}$, the signal will have a relative area of 2 .
- (C) correspond to another two equivalent ${ }^{1} \mathrm{H}$ on the ring. These are expected also to have a chemical shift of $6-9 \mathrm{ppm}$. As it is due to two ${ }^{1} \mathrm{H}$, the signal will have a relative area of 2.
- The chemical shifts of $\{C\}$ will be different to those of $\{B\}$ but you are not expected to order them.

Each proton in $\{B\}$ is adjacent to one proton from set $\{C\}$ and coupling will split the signal due to the $\{B\}$ protons into a doublet.

Each proton in $\{C\}$ is adjacent to one proton from set $\{B\}$ and coupling will similarly split the signal due to the $\{\mathrm{C}\}$ protons into a doublet.

The ${ }^{1} H$ NMR spectrum due to the protons bonded to carbon will thus consist of three signals (due to $A, B$ and $C$ ) and the signals due to $B$ and $C$ will be doublets.

C B
(relative height 2) (relative height 2)


