

School of Chemistry

Chemistry 1B Advanced and SSP (CHEM1902/1904)

Answers to Problem Sheet 2

1. The compound is $C_2H_6N_2$. Molar masses: C_3H_6O 58.042 g mol⁻¹, C_4H_{10} 58.078 g mol⁻¹, $C_2H_6N_2$ 58.053 g mol⁻¹

¹H and ¹³C NMR could be used in all cases.

- (b) **E**
- (c) **D**
- (d) **2**
- (e) **B and C**
- (f) **B**

4. There are three sets of equivalent ¹H atoms bonded to carbon in paracetamol:

- (A) corresponds to the three equivalent ¹H on a -CH₃ group. These are expected to have a chemical shift of 0.8 1.8 ppm. As it is due to three ¹H, the signal will have a relative area of 3.
- (B) corresponds to two equivalent ¹H on the ring. These are expected to have a chemical shift of 6 9 ppm. As it is due to two ¹H, the signal will have a relative area of 2.
- (C) correspond to another two equivalent ¹H on the ring. These are expected also to have a chemical shift of 6 9 ppm. As it is due to two ¹H, the signal will have a relative area of 2.
- The chemical shifts of {C} will be different to those of {B} but you are *not* expected to order them.

Each proton in $\{B\}$ is adjacent to one proton from set $\{C\}$ and coupling will split the signal due to the $\{B\}$ protons into a doublet.

Each proton in $\{C\}$ is adjacent to one proton from set $\{B\}$ and coupling will similarly split the signal due to the $\{C\}$ protons into a doublet.

The ¹H NMR spectrum due to the protons bonded to carbon will thus consist of three signals (due to A, B and C) and the signals due to B and C will be doublets.

chemical shift / ppm