CHEM1901/3 Worksheet 2 - Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: Calculating radioactive decay

1. $\quad N$ is the number of nuclei, t is the time and λ is the decay constant. $N_{(t)}$ is the number of nuclei at time t and $N_{(0)}$ is the number of nuclei at time $t=0$.
The SI unit for time is seconds (s) and the SI unit for the decay constant is inverse seconds $\left(\mathrm{s}^{-1}\right)$.

Model 2: Calculating half life, $\mathbf{t}_{1 / 2}$

1. When $t=t_{1 / 2}, N\left(t_{1 / 2}\right)=0.5 \times N_{(0)}$:

$$
\begin{aligned}
& 0.5 N_{(0)}=\mathrm{N}_{(0)} \mathrm{e}^{-\lambda t_{1 / 2}} \\
& 0.5=\mathrm{e}^{-\lambda t_{1 / 2}} \\
& \ln (0.5)=-\lambda t_{1 / 2} \\
& \ln (2)=+\lambda t_{1 / 2} \\
& t_{1 / 2}=\ln (2) / \lambda
\end{aligned}
$$

2. $\quad t_{1 / 2}$ is the half life. It is the time taken the number of nuclei to halve. The SI unit for time is seconds (s). λ is the decay constant. The SI unit for the decay constant is inverse seconds $\left(\mathrm{s}^{-1}\right)$.
3. See below.

Model 3: Calculating activity

1. $\quad \lambda$ is the decay constant and has SI units of inverse seconds $\left(\mathrm{s}^{-1}\right) . N$ is the number of nuclei. A is the activity and is the number of disintegration per seconds. It has units of disintegration s^{-1} or Bq .
2. Avogadro's constant.
3. $\quad 5.37 \times 10^{12} \mathrm{~Bq}$
4. $\quad \lambda=2.6 \times 10^{-6} \mathrm{~s}^{-1}$ and $t_{1 / 2}=2.6 \times 10^{5} \mathrm{~s}$

Model 4: Carbon-14 Dating

1. 6330 years before 1950
2. 120 years
3. 99 Bq

Model 5: Working in SI units

1. 4.4 days (using the approximation that the amount of ${ }^{37} \mathrm{Ar}$ does not change significantly). 4.5 days (allowing for the small decrease in the amount of ${ }^{37} \mathrm{Ar}$ over this period).

Challenge Question - Simultaneous decay

Equation:

$$
\frac{\mathrm{d} N_{\mathrm{Ar}}}{\mathrm{~d} t}=+\lambda_{\mathrm{K}} N_{\mathrm{K}}-\lambda_{\mathrm{Ar}} N_{\mathrm{Ar}}
$$

Explanation:

The first decay route leads to an increase in the amount of ${ }^{37} \mathrm{Ar}$ and this is shown by the positive sign. The rate of this increase is equal to the decay constant for ${ }^{37} \mathrm{~K}$ multiplied by the amount of ${ }^{37} \mathrm{~K}$ left.
The second decay route to a decrease in the amount of ${ }^{37} \mathrm{Ar}$ and this is shown by the negative sign. The rate of this decrease is equal to the decay constant for ${ }^{37} \mathrm{Ar}$ multiplied by the amount of ${ }^{37} \mathrm{Ar}$ present.

The decay constant for the second process is much slower than for the first process. The amount of ${ }^{37} \mathrm{Ar}$ grows initially as it is made much faster than it decays. As the amount of ${ }^{37} \mathrm{~K}$ left decreases, the rate of formation of ${ }^{37} \mathrm{Ar}$ slows until it is comparable to the slow rate of its decay. At this stage, there is little overall change and the graph is level. Once all of the ${ }^{37} \mathrm{~K}$ has gone, there is exponential loss of ${ }^{37} \mathrm{Ar}$.

