CHEM1901/3 Worksheet 2 – Answers to Critical Thinking Questions

The worksheets are available in the tutorials and form an integral part of the learning outcomes and experience for this unit.

Model 1: Calculating radioactive decay

1. *N* is the number of nuclei, *t* is the time and λ is the decay constant. $N_{(t)}$ is the number of nuclei at time *t* and $N_{(0)}$ is the number of nuclei at time t = 0.

The SI unit for time is seconds (s) and the SI unit for the decay constant is inverse seconds (s⁻¹).

Model 2: Calculating half life, t_{1/2}

1. When $t = t_{1/2}$, $N(t_{1/2}) = 0.5 \times N_{(0)}$:

 $0.5N_{(0)} = N_{(0)}e^{-\lambda t_{1/2}}$ $0.5 = e^{-\lambda t_{1/2}}$ $ln(0.5) = -\lambda t_{1/2}$ $ln(2) = +\lambda t_{1/2}$ $t_{1/2} = ln(2) / \lambda$

- 2. $t_{1/2}$ is the half life. It is the time taken the number of nuclei to halve. The SI unit for time is seconds (s). λ is the decay constant. The SI unit for the decay constant is inverse seconds (s⁻¹).
- 3. See below.

Model 3: Calculating activity

- 1. λ is the decay constant and has SI units of inverse seconds (s⁻¹). *N* is the number of nuclei. *A* is the activity and is the number of disintegration per seconds. It has units of disintegration s⁻¹ or Bq.
- 2. Avogadro's constant.
- 3. 5.37×10^{12} Bq
- 4. $\lambda = 2.6 \times 10^{-6} \text{ s}^{-1}$ and $t_{1/2} = 2.6 \times 10^{5} \text{ s}^{-1}$

Model 4: Carbon-14 Dating

- 1. 6330 years before 1950
- 2. 120 years
- 3. 99 Bq

Model 5: Working in SI units

4.4 days (using the approximation that the amount of ³⁷Ar does not change significantly).
4.5 days (allowing for the small decrease in the amount of ³⁷Ar over this period).

Challenge Question – Simultaneous decay

Equation:

$$\frac{\mathrm{d}N_{\mathrm{Ar}}}{\mathrm{d}t} = +\lambda_{\mathrm{K}}N_{\mathrm{K}} - \lambda_{\mathrm{Ar}}N_{\mathrm{Ar}}$$

Explanation:

The first decay route leads to an *increase* in the amount of 37 Ar and this is shown by the positive sign. The rate of this increase is equal to the decay constant for 37 K multiplied by the amount of 37 K left.

The second decay route to a *decrease* in the amount of ³⁷Ar and this is shown by the negative sign. The rate of this decrease is equal to the decay constant for ³⁷Ar multiplied by the amount of ³⁷Ar present.

The decay constant for the second process is much slower than for the first process. The amount of 37 Ar grows initially as it is made *much* faster than it decays. As the amount of 37 K left decreases, the rate of formation of 37 Ar slows until it is comparable to the slow rate of its decay. At this stage, there is little overall change and the graph is level. Once all of the 37 K has gone, there is exponential loss of 37 Ar.