The University of Sydney

COMBINATION CHEM1001/1101 EXAM

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUN 2003 / NOV 2003

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

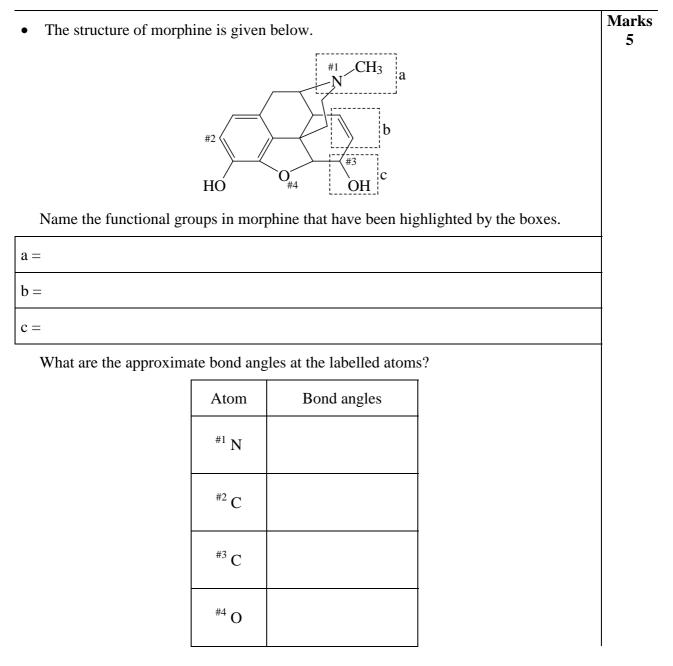
FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 18 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question and a Periodic Table may be found on a separate data sheet.
- Pages 5, 12, 15, 17 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section Marks Pages Max Gained 2-11 37


Short answer section

		Marks		
Page	Max	Gaine	d	Marker
13	6			
14	8			
16	8			
18	7			
19	7			
20	8			
21	6			
22	5			
23	8			
Total	63			
Check	Total			

calculated given the	ic mass of magnesium is reported as 24.3. Show how this figure is he natural abundances of the following isotopes of magnesium: Mg (10.0 %); 26 Mg (11.0 %).	Marks 2
• With examples, b	riefly explain what allotropes are.	2
Complete the follo	owing table.	2
Formula	Name	
Na ₂ CO ₃		
	iron(III) oxide	
PCl ₃		
	ammonia	

• Explain the physical characteristics of an point and conductivity when molten, in te	ionic solid, such as brittleness, high melting erms of the bonding present.	Marks 4
• Draw Lewis diagrams of the following sp pairs of valence electrons.	becies. Show both bonding and non-bonding	4
$\mathrm{NH_4}^+$	CO ₂	

- Marks 5
- The active ingredient in superphosphate fertilizer is calcium dihydrogenphosphate, $Ca(H_2PO_4)_2$. It is made by treating insoluble rock phosphate, $Ca_3(PO_4)_2$ with sulfuric acid. The other product of the reaction is calcium sulfate. Write the molecular equation for the reaction. What mass of sulfuric acid is needed to convert 1.0 tonne (1000 kg) of rock phosphate to superphosphate? Answer: 3 • Analysis of an unknown compound returned the following percentage composition by weight: nitrogen: 26.2%; chlorine: 66.4% hydrogen 7.5% What is the empirical formula of this compound? Answer:

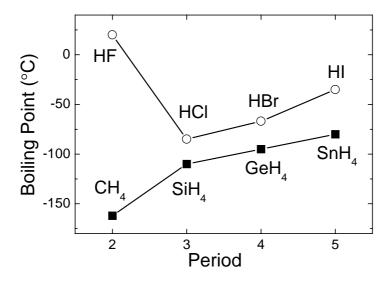
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

•

In the chlor-alkali process, three useful products are formed, including two of the "top ten" chemicals. Write the overall reaction, identify the two "top ten" chemicals, and propose why the third useful product is not usually harnessed in this process.	Marks 3
Explain why the Na ⁺ (aq) is not reduced to Na(s) in this process.	
How does nitric oxide, NO(g), form in a car engine? What happens to the NO once emitted from the tailpipe? Make sure you include the appropriate chemical reactions in your answer.	2

	•
• A 50.0 mL solution contained 10.00 g of NaOH in water at 25.00 °C. When it was added to a 250.0 mL solution of 0.200 M HCl at 25.00 °C in a "coffee cup" calorimeter, the temperature of the solution rose to 33.95 °C. Assuming the specific heat of the solution is 4.18 J K ⁻¹ g ⁻¹ , that the calorimeter absorbs a negligible amount of heat, and that the density of the solution is 1.00 g mL ⁻¹ , calculate ΔH_r (in kJ mol ⁻¹) for the following reaction. H ⁺ (aq) + OH ⁻ (aq) \rightarrow H ₂ O(l)	Marks 4
When the experiment was repeated using 12.00 g of NaOH in water, the temperature increase was the same. Explain.	

Marks • You are a member of a research team of industrial chemists who are discussing the 3 operation of an ammonia plant. Ammonia is formed from nitrogen and hydrogen according to the following equilibrium reaction. $N_2(g) + 3H_2(g) = \overline{\nabla}$ $2NH_3(g)$ The plant operates close to 700 K, at which K_p is 1.00×10^{-4} atm⁻² and employs the stoichiometric ratio 1:3 of N_2 :H₂. At equilibrium the partial pressure of NH_3 is 50 atm. Calculate the partial pressures of each reactant and hence the total pressure under these conditions. p(total) = $p(N_2) =$ $p(H_2) =$ 3 • Ammonium carbamate (NH₂COONH₄) is a salt of carbamic acid that is found in the blood and urine of mammals. At 250 °C, $K_c = 1.58 \times 10^{-8} \text{ M}^3$ for the following equilibrium: $NH_2COONH_4(s)$ <u>__</u> $2NH_3(g) + CO_2(g)$ If 7.81 g of NH₂COONH₄ is introduced into a 0.500 L evacuated container, what is the total pressure inside the container at equilibrium at 250 °C?


Answer:

• Diborane (B ₂ H ₆) is a highly reactive compossible rocket fuel for the US space progradiborane at 298 K from the following reactions of the following reaction of the foll	ram. Calculate the heat of formation of	Marks 2
Reaction	$\Delta H_{\rm r} ({\rm kJ} { m mol}^{-1})$	
$2B(s) + {}^{3}/_{2}O_{2}(g) \rightarrow B_{2}O_{3}(s)$	-1273	
$B_2H_6(g) \ + \ 3O_2(g) \ \rightarrow \ B_2O_3(s) \ + \ $	- 3H ₂ O(g) -2035	
$H_2(g) \ + \ {}^1\!/_2O_2(g) \ \rightarrow \ H_2O(l)$	-286	
$H_2O(l) \rightarrow H_2O(g)$	+44	
	Answer:	
• What is meant by "cathodic protection"? cathodic protection to iron and why? Zn, Ni,	Which of the following metals can provide Al, Sn	2

Marks In the refining of copper, impure copper electrodes are electrolysed in a manner such • 6 as described in the following figure. Indicate in the boxes on the figure, which electrode is the anode and which is the cathode. Batter Impure Cu Pure Cu electrode electrode 50 Mud from noble metals Why are noble metals left as a mud on the bottom of the reaction cell? Explain why Zn^{2+} and Fe^{2+} are not deposited from solution during this reaction. How many kilograms of pure copper will be obtained when the electrolytic cell is operated for 24.0 hours at a constant current of 100.0 A? Answer:

Marks • Corn is a valuable source of industrial chemicals. For example, furfural is prepared 3 from corncobs. It is an important reactant in plastics manufacture and a key solvent in the production of cellulose acetate, which is used to make products such as videotape and waterproof fabric. Furfural can be reduced to furfuryl alcohol or oxidised to 2-furoic acid. The structures of these three compounds are shown below. oxidation reduction СНО CH₂OH OOH furfuryl alcohol furfural 2-furoic acid Explain, in terms of oxidation numbers, why we say that furfural is oxidised to 2-furoic acid and *reduced* to furfuryl alcohol. Which of these three compounds can form hydrogen bonds? Draw the structure in each case. THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• The figure below shows the boiling points of Group 14 and 17 hydrides as a function of the period (row) of the periodic table. Marks
3

A number of trends are apparent from this figure, including:

- the tetrahydrides have lower boiling points than the monohydrides,
- the boiling point increases with period, with the exception of HF. Explain these two trends, and the reason that HF is exceptional.

Marks • Styrene is the monomer from which the important polymer, polystyrene, is 5 manufactured. The formula of styrene is shown below. $CH = CH_2$ Draw the repeating unit for polystyrene. The average C–C bond length in the backbone of polystyrene is 0.154 nm and the C–C–C bond angle is 109.5°. Calculate the total extended end-to-end distance of the polymer chain, and the average radius of gyration in a sample of polystyrene that has a molar mass of 100,000 g mol⁻¹. Unlike polystyrene, which exhibits free rotation about the C-C single bonds, a polypeptide exhibits restricted rotation in its backbone because of the partial double bond character of the peptide bond. Explain this feature of polypeptides using resonance structures of the peptide bond.

The University of Sydney

FIRST SEMESTER EXAMINATION

JUNE 2003

Numerical Data

Physical constants

Planck constant = $h = 6.626 \times 10^{-34}$ J s Speed of light in vacuum = $c_0 = 2.998 \times 10^8$ m s⁻¹ Avogadro constant = $N_A = 6.022 \times 10^{23}$ mol⁻¹ Faraday constant = F = 96485 C mol⁻¹ Ideal gas constant = R = 8.314 J K⁻¹ mol⁻¹ = 0.08206 L atm K⁻¹ mol⁻¹ Volume of 1 mol of ideal gas at 1 atm, 0 °C = 22.4 L Volume of 1 mol of ideal gas at 1 atm, 25 °C = 24.5 L

Conversion factors

0 °C = 273 K 1 atm = 101.3 kPa = 760.0 mmHg 1 nm = 10^{-9} m 1 MHz = 10^{6} Hz = 10^{6} s⁻¹ 1 L = 10^{-3} m³

Formulas

E = h v	$c = \lambda v$
PV = nRT	$\Delta H = C_{\rm p} \ m \ \Delta T$
$pH = -log[H^+]$	pH + pOH = 14.00
$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$	

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нуdrogen Н 1.008																	2 неши Не 4.003
3 LITHIUM	4											5	6	7 NITROGEN	8	9	10
Linnion	BERYLLIUM Be											BORON B	CARBON C	NITROGEN	OXYGEN O	fluorine F	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
^{sodium}	MAGNESIUM Mg											ALUMINIUM Al	SILICON Si	PHOSPHORUS P	SULFUR S	CHLORINE Cl	argon Ar
22.99	24.31											26.98	28.09	1 30.97	32.07	35.45	39.95
19 POTASSIUM	20 CALCIUM	21 scandium	22 TITANIUM	23 vanadium	24 CHROMIUM	25 manganese	26 IRON	27 cobalt	28 NICKEL	29 COPPER	30 zinc	31 GALLIUM	32 germanium	33 ARSENIC	34 selenium	35 bromine	36 KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37 RUBIDIUM	38 strontium	39 yttrium	40 zirconium	41 NIOBIUM	42 molybdenum	43 technetium	44 ruthenium	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49 INDIUM	50 TIN	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 xenon
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55 caesium	56 barium	57-71	72 hafnium	73 tantalum	74 TUNGSTEN	75 RHENIUM	76 05MIUM	77 IRIDIUM	78 platinum	79 GOLD	80 mercury	81 THALLIUM	82	83 bismuth	84 polonium	85 astatine	86 RADON
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 francium	88 radium	89-103	104 RUTHERFORDIUM	105 dubnium	106 seaborgium	107 bohrium	108 hassium	109 meitnerium									
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
	57		0	50	60	61	62	62	64	64		6	67	69	60	70	71

PERIODIC TA	BLE OF	THE EL	EMENTS
-------------	---------------	--------	--------

LANTHANIDES	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ACTINIDES	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]