CONFIDENTIAL
JUNE 2000
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

SURNAME				OTHER NAMES		
SID		FACULTY		TABLE		
NUMBER			NUMBER			

INSTRUCTIONS TO CANDIDATES

All questions are to be attempted. There are 14 pages of examinable material.

Complete the written section of the examination paper in INK.

Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.

The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.

Each new question begins with a \bullet.
Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.

Numerical values required for any question and a Periodic Table may be found on a separate data sheet.

Pages $4,10,12,15 \& 20$ are for rough working only.

OFFICIAL USE ONLY

Short answer section

Page	Marks			Marker
	Max	Gained		
13	9			
14	7			
16	9			
17	8			
18	9			
19	8			
Total	50			
Check Total				

- Using the information below concerning bond enthalpies, estimate the heat of reaction ΔH° of the following reaction:
- The boiling points of the binary hydrides of Group 16 are as follows:

$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}_{2} \mathrm{Se}$	$\mathrm{H}_{2} \mathrm{Te}$
$100{ }^{\circ} \mathrm{C}$	$-60{ }^{\circ} \mathrm{C}$	$-41^{\circ} \mathrm{C}$	$-2{ }^{\circ} \mathrm{C}$

Pure water can be kept indefinitely as a liquid at $-5^{\circ} \mathrm{C}$. Which liquid, $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{Te}$, would you expect to exhibit the larger heat of solvation for ionic species at $-5^{\circ} \mathrm{C}$? Provide a brief explanation of your answer.

Identify one difference between the atoms oxygen (O) and tellurium (Te) directly associated with the difference in the boiling points of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{Te}$.

- Use the following information to calculate the heat of formation $\Delta H_{\mathrm{f}}^{\circ}$ of methanol $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$.
- The electrons involved in metallic bonding are typically delocalised throughout the solid metal. Explain, in terms of the quantum theory of the electron, why this behaviour would be expected to decrease the energy of those electrons.
- Draw Lewis structures for the following species. (The central atom is underlined.)

$\underline{\mathrm{COCl}_{2}}$	$\underline{\mathrm{PF}}_{3}$	$\mathrm{H}_{3} \underline{\mathrm{O}}^{+}$
HCN	$\underline{\mathrm{SCl}}$	
		$\underline{\mathrm{CO}}_{3}{ }^{2-}$

Complete the following table.

Species	COCl_{2}	PF_{3}	$\mathrm{H}_{3} \mathrm{O}^{+}$	HCN	SCl_{2}	$\mathrm{CO}_{3}{ }^{2-}$
No. of electron pairs around central atom not involved in π bonding						
No. of π bonding orbitals						
Geometric arrangement of σ and lone pairs						
Hybridisation of central atom						
Geometry of molecule or ion						
Does the molecule have a non-zero dipole moment?						

- Reduction of a metal oxide, MO, follows the reaction

$$
\mathrm{MO}(\mathrm{~s})+\mathrm{C}(\mathrm{~s}) \rightleftharpoons \mathrm{M}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g})
$$

which has an equilibrium constant $K_{\mathrm{p}}=2.5 \mathrm{~atm}$ at 1200 K .
(a) At what pressure would equilibrium be established at 1200 K ?
(b) Below what pressure of $\mathrm{CO}(\mathrm{g})$ must the system be maintained at 1200 K to ensure complete conversion of $\mathrm{MO}(\mathrm{s})$ into $\mathrm{M}(\mathrm{s})$?
\square

- For each process shown on the left, place a " + " in the boxes below if the quantity at the head of the column is positive or place a "-" if the quantity is negative. If there is no change, place a " 0 " in the box.

Process	ΔE	ΔH	ΔS	ΔG
1 mole of ideal gas at $25^{\circ} \mathrm{C}$ and $1 \mathrm{~atm} \rightarrow$ 1 mole of ideal gas at $25^{\circ} \mathrm{C}$ and 0.5 atm				
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $25^{\circ} \mathrm{C}$ and 1 atm				
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $100^{\circ} \mathrm{C}$ and 1 atm				

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORK ONLY.

- A mixture of H_{2} and D_{2} at 300 K effuses from a very tiny hole in the containing vessel. If 2.5 times as many D_{2} molecules as H_{2} escape from the pinhole in unit time, what is the mole fraction of D_{2} in the original gas mixture? (D stands for the isotope ${ }^{2} \mathrm{H}$.)

ANSWER:

- How many millilitres of 0.100 M NaOH solution must be added to 100 mL of 0.150 M acetic acid solution to give a solution with a pH of 4.05 ?

Data: The $\mathrm{p} K_{\mathrm{a}}$ of acetic acid is 4.76 .

ANSWER:

- By inserting a cross in the appropriate box, indicate those conditions of pressure, P, volume, V, and temperature, T, where you might observe significant deviation in gas behaviour from that of an ideal gas. Where near ideal gas behaviour is expected, mark with a tick.

Conditions	$P=1 \mathrm{~atm}, V=25 \mathrm{~L}$, $T=300 \mathrm{~K}$	V low, T low, $P=0.1 \mathrm{~atm}$	P low, V high, $T=1000 \mathrm{~K}$	P, V and T are at their critical values
\checkmark or \mathbf{X}				

- Three substances, labelled A, B and C combine to give two products, X and Y . The rate law and stoichiometric equation are not known. However, when 0.100 mol of each are present in 100 mL of solution, the rate of production of Y is $6.5 \times 10^{-3} \mathrm{M} \mathrm{s}^{-1}$.

What is the value of the rate constant, k, for this reaction?
\square
If the reaction is third order, what are the units of k ?

The isomerisation $\quad \mathrm{CH}_{3} \mathrm{NC}(\mathrm{g}) \rightarrow \mathrm{CH}_{3} \mathrm{CN}(\mathrm{g}) \quad$ obeys first order kinetics. It has an activation energy of $160 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the rate constant measured at 600 K is $0.41 \mathrm{~s}^{-1}$. Calculate the half-life of this reaction at 800 K . Show all working.

CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903

FIRST SEMESTER EXAMINATION
JUNE 2000

Numerical Data

Physical constants
Planck constant $=h=6.626 \times 10^{-34}$ joule second
Speed of light in vacuum $=c_{0}=2.998 \times 10^{8}$ metre second $^{-1}$
Avogadro constant $=N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mole}^{-1}$
Standard atmosphere $=1.013 \times 10^{5}$ pascal
Ideal gas constant $=R=8.314$ joule kelvin ${ }^{-1}$ mole $^{-1}$ $=0.08206$ litre atmosphere kelvin $^{-1}$ mole $^{-1}$
$1 \mathrm{~nm}=1$ nanometre $=10^{-9}$ metre
$1 \mathrm{~kJ}=1$ kilojoule $=10^{3}$ joule
$1 \mathrm{kPa}=1$ kilopascal $=10^{3}$ pascal
$1 \mathrm{~L}=1$ litre $=1 \mathrm{dm}^{3}=1$ decimetre $^{3}=10^{-3}$ metre 3

Atomic Weights of Isotopes
Hydrogen, ${ }^{1} \mathrm{H},=1.008$
Deuterium, ${ }^{2} \mathrm{H},=2.014$

Thermochemical Data at 298 K

	$\Delta H_{\mathrm{f}}^{\mathrm{o}} / \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{NH}_{3}(\mathrm{~g})$	-46
$\mathrm{NO}(\mathrm{g})$	90
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

