22/10(a) The University of Sydney

CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)

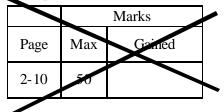
SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2001

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS


FAMILY NAME	SID NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 15 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
 Logarithms may also be used.
- A Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 3, 12, 17 & 20 are for rough working only.

OFFICIAL USE ONLY

Multiple choice sections

Short answer section

		Marks	
Page	Max	Gained	Marker
11	8		
13	9		
14	3		
15	10		
16	10		
18	5		
19	5		
Total	50		

CHEM1902/1904

Check Total		
-------------	--	--

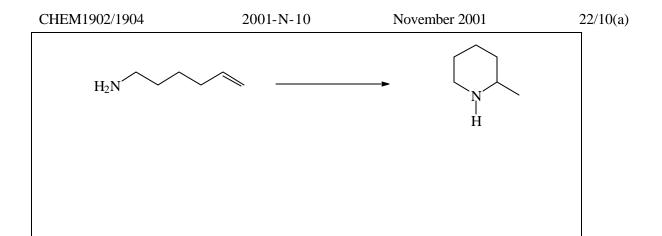
• Consider the compound with formula $[PtCl_4(NH_3)_2]\cdot 2H_2O$.	Marks 3
	5
Name the compound.	
Write the formula of the complex ion.	
Write the atomic symbols of the ligand donor atoms.	
What is the 5d electron configuration of the metal ion in this complex?	
• Write balanced equations for each of the following reactions. If there is no reaction then write "no reaction".	5
Excess sodium hydroxide (2 M) is added to a solution containing $A\beta^+$.	
Water is added to solid lithium hydride.	
Excess hydrochloric acid (4 M) is added to solid nickel(II) sulfide.	
50 mL of ammonia solution (1 M) is added to 1 L of cobalt(II) chloride solution (1 M).	

Solid silver(I) sulfide is added to a solution of potassium cyanide (1.0 M).

	lution that is in equilibrium with excess $Fe(OH)_3(s)$.	
	ANSWER:	
Would a solution buffer working used to arrive	red at pH 5.5 be suitable for separating Fe^{3+} from Zn^{2+} ? Show all at your conclusion.	
	ANSWER:	
	quently electroplated from the filtered solution buffered at pH 5. ercentage le vel of iron impurity present in the zinc?	.5,
r		

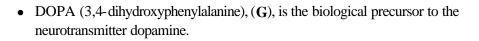
CHEM1902/1904	2001-N-6	November 2001	22/10(a)
	ANSW	ER:	

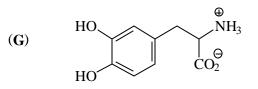
• A solution contains cobalt ions in an unknown oxidation state. When a current of 3.0 A was S applied for 1.0 hr, 3.3 g of cobalt metal was deposited. What was the oxidation state of the 3 cobalt ions? Show all working.


Mark

ANSWER:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.


Mark • Give the constitutional formulas and names, where required, of the major organic product(s) S formed in the following reactions. 10 dilute H₂SO₄ Name: O II CH₃CN(CH₃)₂ heat, H^{\oplus}/H_2O NO₂ conc. H₂SO₄, conc. HNO₃ heat Name: 1) Mg in dry ether 2) CH₃CHO 3) $\operatorname{Cr_2O_7}^{2\Theta}/\operatorname{H}^{\oplus}$ CH₃I OH conc. H₂SO₄, heat Name:


Mark • Draw a scheme that represents the electrophilic addition reaction of HBr to styrene. Clearly S show any intermediates in the reaction and include curly arrows to indicate electron 4 movements. styrene Comment on the stability of any intermediate(s). Is the product of this reaction formed as an achiral compound, the (R)-enantiomer, the (S)-enantiomer or as a racemic mixture? 6 • With the aid of structure diagrams, show how you would effect the following conversions. Clearly indicate the reagents you would use and any intermediate compounds. OH HO

lowest priority

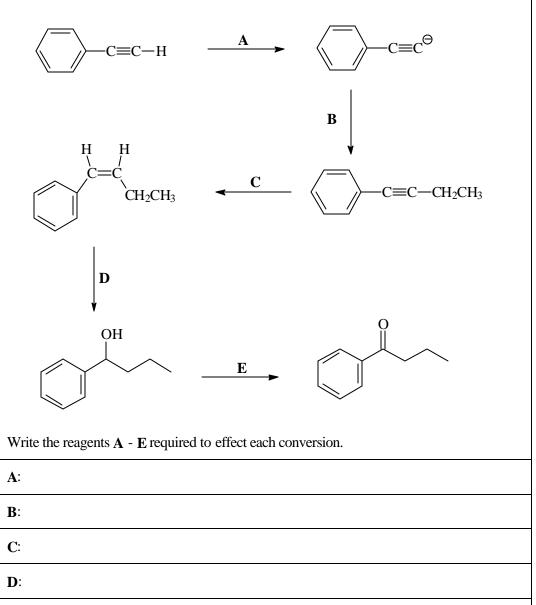
,.....

On the above diagram clearly mark the stereogenic centre in DOPA, (G).

List the substituents attached to the stereogenic centre in descending order of priority according to the appropriate rules.

highest priority

Only the (*S*)-enantiomer of (**G**) is converted to dopamine in the brain. Draw the (*S*)-enantiomer of


DOPA by completing the diagram on the right.

Draw the structure of the product that results from treatment of (G) with excess OH⁻.

Draw the structure of the product that results from treatment of (G) with LiAlH $_4$ followed by H⁺/H₂O.

s 5

• Consider the following synthetic sequence.

E:

22/10(b)

The University of Sydney

CHEM1902/1904

SECOND SEMESTER EXAMINATION

NOVEMBER 2001

TIME ALLOWED: THREE HOURS

Numerical Data

Physical constants I

Faraday constant = $F = 96485 \text{ C mol}^{-1}$

Electrode potentials

2H ⁺ (aq)	+	2e-	+	$H_2(g)$	$E^\circ = 0.00 \text{ V}$
$Pb^{2+}(aq)$	+	2e-	~`	Pb(s)	$E^{\circ} = -0.13 \text{ V}$
Zn ²⁺ (aq)	+	2e-	~`	Zn(s)	$E^\circ = -0.76 \text{ V}$

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008																	2 нелим Не 4.003
3	4											5	6	7	8	9	10
LITHIUM	BERYLLIUM Be											BORON B	CARBON C	NITROGEN N	OXYGEN O	FLUORINE F	NEON Ne
6 .941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
Na	Mg											Al	Si	Р	S	Cl	Ar
22.99	24.31				1		1	1			1	26.98	28.09	30.97	32.07	35.45	39.95
19 potassium	20 CALCIUM	21 scandium	22 TITANIUM	23 vanadium	24 сняомим	25 manganese	26 IRON	27 COBALT	28 NICKEL	29 COPPER	30 zinc	31 GALLIUM	32 germanium	33 ARSENIC	34 selenium	35 bromine	36 KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73 tantalum	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM CS	BARIUM Ba		hafnium Hf	Ta	TUNGSTEN W	RHENIUM Re	OSMIUM OS	IRIDIUM Ir	platinum Pt	Au	MERCURY Hg	THALLIUM	IEAD Pb	візмитн Ві	POLONIUM PO	ASTATINE At	RADON Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87		89-103	104	105	106	107	108	109							[=====]	[=====]	[]
FRANCIUM	RADIUM		RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM									
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									

PERIODIC TABLE OF THE ELEMENTS

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
LANTHANIDE	LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
S	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97

November 2001

CHEM1902/1904

22/10(b)

ACTINIDES	89 actinium	90 THORIUM	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 Americium	96 curium	97 berkellium	98 californium	99 EINSTEINIUM	100 Fermium	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
ACTINIDES	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]