22/03(a) The University of Sydney

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

SECOND SEMESTER EXAMINATION

NOVEMBER 2001

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

CONFIDENTIAL

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question begins with a \bullet .
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Some useful formulas, a Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 14 and 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

		Marks		
Page	Max	Gained		Marker
12	6			
13	6			
15	7			
16	5			
17	8			
18	6			
19	4			
20	4			
21	6			
22	3			
23	3			
Total	58			

Marks • At the high temperatures reached in a cylinder of a car engine, some N₂ reacts with O₂ to 6 form nitric oxide, NO, which further reacts to form NO₂, a toxic pollutant that contributes to smog. The equations for the reactions are: $K_{\rm p1} = 4.3 \times 10^{-25}$ at 298 K $N_2(g) + O_2(g) \implies 2NO(g)$ $2NO(g) + O_2(g) \implies 2NO_2(g) \qquad K_{p2} = 2.5 \times 10^8 \text{ atm}^{-1} \text{ at } 298 \text{ K}$ Calculate K_c for the reaction: $N_2(g) + 2O_2(g) \implies 2NO_2(g)$ at 298 K $K_{\rm c} =$ Calculate ΔG° for the reaction: N₂(g) + 2O₂(g) \Longrightarrow 2NO₂(g) at 298 K. $\Delta G^{\circ} =$ At what temperature will the reaction $N_2(g) + O_2(g) \implies 2NO(g)$ become spontaneous? Use the following data. $\Delta H^{\circ}_{f}/\text{kJ} \text{ mol}^{-1}$ $S^{\circ} / J K^{-1} moh^{1}$ 0 205 $O_2(g)$ 0 192 $N_2(g)$ NO(g) 90 211

CHEM1909	2001-N-3	November 2001	22/03(a)
		<i>T</i> =	

• Complete the table by drawing the Lewis structure and indicating the molecular geometry and hybridisation of the underlined atom.

Marks 6

Species	Lewis struc ture	Shape of molecule	Hybridisation of
		or ion	underlined atom
$\underline{Cl}F_3$			
\underline{NO}_{2}^{+}			
SE			
<u>~</u> ~ 0			

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks 5

2

• In a laboratory experiment similar to the one you undertook on calorimetry, 5.0 g of NaOH pellets was dissolved in 200 mL of water in a calorimeter that had an overall heat capacity (including the solution) of 910 J K⁻¹. A temperature increase of 4.75 °C was noted. In another experiment, 100 mL of 0.50 M HCl was mixed with 100 mL of 0.50 M NaOH in the calorimeter and a temperature increase of 3.26 °C was noted.

Write the equations of the two processes that are occurring and calculate the enthalpy change (in $kJ mot^{1}$) of each.

In a third experiment, the enthalpy change of the reaction

 $NaOH(s) + H^+(aq) \rightarrow Na^+(aq) + H_2O$ was measured to be -95 kJ mol⁻¹. Comment on this value in the light of the first two experiments.

• The Haber Process, used in the production of ammonia, is catalysed by iron.

 $N_2(g) + 3H_2(g) \implies 2NH_3(g)$

 $\Delta H^{\circ}_{f}(NH_3) = -46 \text{ kJ mol}^{-1}$

How might temperature affect the formation of NH₃ from N₂ and H₂?

CHEM1909	2001-N-7		<u>.</u>
• The following da	ata were obtained for th	e osmotic pressure of solutions of a particular	Ma
protein at four di	ifferent concentrations	at 37 °C.	
	Conc. (mg L^{-1})	Osmotic Pressure (mPa)	
	10	0.26	
	50	1.26	
	800	17.1	
From these data.	what is the best estimated	ate for the molecular weight of this protein?	
		Answer:	
What is a reasonabl	e explanation for the cu	urvature seen in the data?	
 What is a reasonabl The freezing point of sea wate 0.460 mol k 	e explanation for the cu nt depression constant f r given that it contains t cg ⁻¹ Na ⁺	for water is 1.86 K kg mol ⁻¹ . Calculate the freezi the following ions: 0.540 mol kg ⁻¹ Cl ⁻	ng
 What is a reasonabl The freezing poir point of sea wate 0.460 mol k 0.054 mol k 	e explanation for the cu nt depression constant f r given that it contains t $(g^{-1} Na^+)$ $(g^{-1} Mg^{2+})$	for water is 1.86 K kg mol ⁻¹ . Calculate the freezi the following ions: 0.540 mol kg ⁻¹ Cl ⁻ 0.028 mol kg ⁻¹ SO ₄ ²⁻	ng
 The freezing poir point of sea wate 0.460 mol k 0.054 mol k 0.011 mol k 0.010 mol k 	e explanation for the cu nt depression constant f r given that it contains t cg^{-1} Na ⁺ cg^{-1} Mg ²⁺ cg^{-1} Ca ²⁺ cg^{-1} K ⁺	for water is 1.86 K kg mol ⁻¹ . Calculate the freezi the following ions: $0.540 \text{ mol kg}^{-1} \text{ Cl}^{-}$ $0.028 \text{ mol kg}^{-1} \text{ SO}_{4}^{2-}$ $0.004 \text{ mol kg}^{-1} \text{ HCO}_{3}^{-}$	ng
 The freezing point of sea wate 0.460 mol k 0.054 mol k 0.011 mol k 0.010 mol k 	e explanation for the cu nt depression constant f r given that it contains t cg ⁻¹ Mg ²⁺ cg ⁻¹ Ca ²⁺ cg ⁻¹ K ⁺	for water is 1.86 K kg mol ⁻¹ . Calculate the freezi the following ions: 0.540 mol kg ⁻¹ Cl ⁻ 0.028 mol kg ⁻¹ SO ₄ ²⁻ 0.004 mol kg ⁻¹ HCO ₃ ⁻	ng

• The $H_2PO_4^-$ and HPO_4^{2-} ions play a role in maintaining the pH of intracellular fluid. Write equations to show how a solution containing these ions functions as a buffer. **Marks** 6

At what pH is the H₂PO₄⁻ / HPO₄²⁻ buffer system most effective? Why? For phosphoric acid: $K_{a1} = 7.1 \times 10^{-3}$ M, $K_{a2} = 6.3 \times 10^{-8}$ M, $K_{a3} = 4.2 \times 10^{-13}$ M.

pH =

Calculate the ratio of $[H_2PO_4^{-}] / [HPO_4^{2-}]$ required to give a buffer with a pH of 7.68.

Answer:

• The solubility product constant, K_{sp} , of Mg(OH)₂ is 7.1×10^{-12} M³. Calculate the solubility of Mg(OH)₂ (in mol L⁻¹) in a water solution buffered at pH 10.00.

2

Answer:

CHEM1909	CHEM1909 2001-N-10 November 2001 22		
• Briefly outline three and simple diagram	e kinds of isomerism possible s to show how the isomerism	in coordination complexes, given arises.	ing examples Marks 3
		0.10 1) 1	3
• A solution is prepar to give 1.00 L of sol $[Zn(NH_3)_4]^{2+} = 1 \times$	ed by dissolving $Zn(NO_3)_2$ (lution. What is the equilibriu 10^9 M^{-4} ?	0.10 mol) and ammonia (3.0 m im concentration of $Zn^{2+}(aq)$ giv	en K_{stab}

Answer:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• The rearrangement of the 5-hexenyl radical to give a cyclopentylmethyl radical proceeds with a rate constant of 1.0×10^5 s⁻¹ at 25 °C. What is the half-life of the 5-hexenyl radical at 25 °C?

$t_{1/2} =$

The activation energy for the 5-hexenyl radical rearrangement is 25.4 kJ mol⁻¹. What is the rate constant for the rearrangement of the 5-hexenyl radical at 37 °C?

k =

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks 2

• Ozone is destroyed in the stratosphere by the reactions:

$$\begin{array}{l} X + O_3 \rightarrow XO + O_2 \\ XO + O \rightarrow X + O_2 \end{array}$$

where X is the H, OH, NO, Cl or Br radical.

The concentrations of all X species in the atmosphere are extremely low, and ozone molecules are continually being generated in the atmosphere at a much greater rate than these reactions can destroy them. These reactions, however, still have a significant impact on the amount of ozone in the atmosphere. Why?

• 'The more bubbles there are in the dishwater, the better it is for cleaning dishes.'

Explain what is wrong with this statement.

• Sodium oleate can be used to make an **oil-in-water** emulsion, but to make a **water-in-oil** emulsion, magnesium oleate is more effective. Draw a diagram to illustrate the physical basis for this effect.

2

- Marks 2
- It has recently been suggested that 'cancer clusters' are associated with high-voltage overhead power lines that produce negative ions. It is thought that the negative ions cause the aggregation of colloidal particles of airborne carcinogens, which subsequently settle out nearby. Explain, with the aid of a diagram, how this aggregation might occur.

• Double beta decay is a rare nuclear process where two beta particles are released simultaneously from an unstable nucleus. Write the equation for the double beta decay of ¹⁰⁰Mo.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

1

Marks • The figure below shows the estimated abundance of each element in the universe on a log 3 scale. 1012 . 109 Relative Abundance 10⁶ MM WWW WA 10³ 1 0 10 20 30 60 90 100 40 50 70 80 Atomic Number, Z Briefly explain why the curve has the general shape it does. Briefly explain one of the deviations from this general trend. THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

22/03(b)

The University of Sydney

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

Faraday constant = $F = 96485 \text{ C mo}\text{P}^1$ Speed of light = $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Planck constant = $h = 6.626 \times 10^{-34} \text{ J s}$ Avogadro constant = $N_A = 6.022 \times 10^{23} \text{ mo}\text{P}^1$ Standard atmosphere = 101 325 Pa = 760 mmHg Ideal gas constant = $R = 8.314 \text{ J K}^{-1} \text{ mo}\text{P}^1 = 0.08206 \text{ L atm K}^{-1} \text{ mo}\text{P}^1$

Conversion factors

$0 \circ C = 273 \text{ K}$	$1 \text{ mL} = 10^{-3} \text{ L}$	$1 L = 10^{-3} m^3$	$1 \text{ mPa} = 10^{-3} \text{ Pa}$
$1 \text{ kJ} = 10^3 \text{ J}$	$1 \text{ mA} = 10^{-3} \text{ A}$	$1 \text{ nm} = 10^{-9} \text{ m}$	$1 \text{ mg} = 10^{-3} \text{ g}$

Standard Reduction Potentials at 298 K

$Cu^{2+}(aq) + 2e^{-}$	\leftarrow Cu(s)	$E^{\circ} = +0.34$
$Fe^{2+}(aq) + 2e^{-}$	\leftarrow Fe(s)	$E^{\circ} = -0.44$
$2H^{+}(aq) + 2e^{-}$	$ \longrightarrow H_2(g) $	$E^\circ = 0.00$
$\frac{1}{2}O_2(g) + 2H^+(aq) + 2e^-$	$\stackrel{\bullet}{\longleftarrow}$ H ₂ O	$E^{\circ} = +1.23$

Useful Formulas

Thermodynamics and Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\Delta G^{\circ} = -RT \ln K$ $K = K (BT)^{\Delta n}$	Kinetics $t_{\frac{1}{2}} = \ln 2/k$ $k = Ae^{-E_a/RT}$ $\ln[A] = \ln[A]$
$K_p = K_c (RI)^{-1}$ Colligative properties $\pi = cRT$	$\mathbf{m}[\mathbf{A}] = \mathbf{m}[\mathbf{A}]_{o} - \kappa t$ Electrochemistry $\Delta G^{\circ} = -nFF^{\circ}$
p = kc	$E = E^{\circ} - RT/nF \ln Q$ $E^{\circ} = RT/nF \ln K$
Acids and Bases $pK_w = pH + pOH = 14$	Moles of $e^- = It/F$
$pK_{w} = pK_{a} + pK_{b} = 14$ pH = pK_{a} + log{ [base] / [acid] }	Quantum Chemistry $E = h_V = hc/\lambda$

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1 HYDROGEN H																	2 HELIUM He
	1.008	1	1										5	6	7	8	9	4.003
		H BERYLLIUM											BORON	CARBON	/ NITROGEN	OXYGEN	FLUORINE	NEON
	L 6.041	Be											B	12.01	IN 14.01	16.00	F	INE 20.18
	11	12											10.81	12.01	14.01	10.00	19.00	18
	I I SODIUM	I Z MAGNESIUM											ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	L / CHLORINE	ARGON
	Na	Mg											Al	Si	Р	S	Cl	Ar
	22.99	24.31								• •	• •		26.98	28.09	30.97	32.07	35.45	39.95
	19 POTASSUM	20	21 SCANDIUM	22 TITANUM	23	24	25 MANGANESE	26	27	28	29	30 TNC	31	32	33	34 SELENIUM	35 BROMINE	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
		STRONTIUM	YTTRIUM V	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM D 11	RHOD IUM	PALLADIUM	SILVER		INDIUM	TIN Sm	ANTIMONY	TELLURIUM	IODINE	XENON Vo
	КU 85.47	87.62	I 88.01	21 91.22	1 ND 92.91	1 VIO 95.94	IC [98.91]	NU 101.07	NII 102.91	106 /	Ag	112 AC		118.69	30 121.75	127.60	∎ 126.90	AC 131.30
	55	56	57_71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	CAESIUM	BARIUM	57-71	HAFNIUM	TANTALUM	7 T TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
	Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	П	Pb	Bi	Po	At	Rn
	132.91	137.34	00.100	178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
	8 / FRANCIUM	88 radium	89-103	104 RUTHERFORDIUM	105 dubnium	106 SEABORGIUM	107 BOHRIUM	108 hassium	109 meitnerium									
	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
	[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
		_																
		57	7 4	58	59	60	61	62	63	64	6.	5	66	67	68	69	70	71
1	LANTHANID	E LANTHAI	NUM CE	RIUM PR.	ASEODYMIUM Dr	NEODYMIUM	PROMETHIUM Dm	SAMARIUM	EUROPIUM		M TERBI	UM D		ноімим	ERBIUM	THULIUM	VTTERBIUM Vh	LUTETIUM
	3	138 G	91 14	0.12	140 91	144 24	1 111 [144 9]	150.4	151.96	157.24	5 158	93	62 50	164 93	167.26	168.93	173 04	174 97
		80) (90	91	92	93	94	95	96	9'	7	98	99	107.20	101	102	103
	ACTINIDES	ACTINI	UM TH	DRIUM PR	OTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKEL	LIUM C	LIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
		Ac	:]]	l'h	Pa	U	Np	Pu	Am	Cm	B	K	Cf	Es	Fm	Md	No	Lr
		[227	01 23	2.04 [231.01	238.03	[237.0]	[239 1]	[243 1]	[247.1	1 [247	11 I	252 11	[252 1]	[257 1]	[256 1]	[259 1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

November 2001

CHEM1909

22/03(b)