22/01(a)

JUNE 2004

The University of Sydney

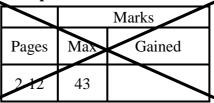
FUNDAMENTALS OF CHEMISTRY 1A - CHEM1001

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS


FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 15, 19, 22 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

	Marks			
Page	Max	Gained		Marker
13	6			
14	12			
16	6			
17	7			
18	7			
20	5			
21	6			
23	8			
Total	57			
Check	Total			

• Balance the following nuclear reactions by identifying the missing nuclear particle.	Marks 2
$^{14}_{6}C \rightarrow ^{14}_{7}N +$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
• Ionising radiation is defined as radiation that has energy greater than 1.93×10^{-18} J per photon. Using this criterion, determine whether UV light of $v = 1.00 \times 10^{16}$ Hz would be ionising.	2
• The atoms in both iodine and diamond are joined by covalent bonds. However, iodine is a soft, low-melting point solid while diamond is very hard and has an extremely high melting point. Account for these differences in properties.	2

• Give the formula and name of a binary ionic compound formed from the following elements.			Marks 6
	Formula	Name	
magnesium and oxygen			
barium and bromine			
sodium and nitrogen			
potassium and oxygen			
• Explain why some ionic concerning hydrocarbon solvents such		oluble in water and usually insoluble in	2
• Draw Lewis diagrams for the following species. Show both bonding and non-bonding pairs of valence electrons. Give the geometry of the species.			
$\mathrm{NH_4}^+$		SO ₂	
Geometry:		Geometry:	<u> </u>

 Solid sodium hydroxide reacts with carbon dioxide to produce sodium carbonate and water. Calculate the mass of sodium hydroxide required to prepare 53.0 g of sodium carbonate. Analysis of an unknown compound returned the following percentage composition by weight: nitrogen: 26.2%; chlorine: 66.4% hydrogen 7.5% What is the empirical formula of this compound? 	
 Analysis of an unknown compound returned the following percentage composition by weight: nitrogen: 26.2%; chlorine: 66.4% hydrogen 7.5% 	
Analysis of an unknown compound returned the following percentage composition by weight: nitrogen: 26.2%; chlorine: 66.4% hydrogen 7.5%	
Analysis of an unknown compound returned the following percentage composition by weight: nitrogen: 26.2%; chlorine: 66.4% hydrogen 7.5%	
Analysis of an unknown compound returned the following percentage composition by weight: nitrogen: 26.2%; chlorine: 66.4% hydrogen 7.5%	
Analysis of an unknown compound returned the following percentage composition by weight: nitrogen: 26.2%; chlorine: 66.4% hydrogen 7.5%	
Analysis of an unknown compound returned the following percentage composition by weight: nitrogen: 26.2%; chlorine: 66.4% hydrogen 7.5%	
Analysis of an unknown compound returned the following percentage composition by weight: nitrogen: 26.2%; chlorine: 66.4% hydrogen 7.5%	
weight: nitrogen: 26.2%; chlorine: 66.4% hydrogen 7.5%	
nitrogen: 26.2%; chlorine: 66.4% hydrogen 7.5%	_{by} 3
What is the empirical formula of this compound?	
Answer:	

Marks • Water solutions of NaOH (100 mL, 2.0 M) and HCl (100 mL, 2.0 M), both at 24.6 °C, 5 were mixed together in a coffee cup calorimeter. The temperature of the solution rose to 38.0 °C during the reaction process. Write a balanced chemical equation to describe the reaction in the calorimeter. Is the process an endothermic or exothermic reaction? Assuming a perfect calorimeter, determine the standard enthalpy change for the neutralisation reaction. Assume the density of water is 1.00 g mL^{-1} . The heat capacity of water is 4.18 J $K^{-1} g^{-1}$. 2 • Explain why aluminium metal cannot be produced by the electrolysis of aqueous solutions of aluminium salts.

CHEM1001	2004-J-6	June 2004	22/01(a)
	trolysis of aqueous NaCl solut s of Cl ₂ (g) was formed?	on, 1000 g of NaOH was	Marks 4
• Briefly describe the fe	ollowing ideas or phenomena.		3
Dynamic equilibrium			
The difference betwee	en Q and K		
Effect of a catalyst or	equilibrium		

Marks • Aluminium metal is a very effective agent for reducing oxides to their elements. For 5 example, it is used as a component of the solid fuel in the space shuttle, and in the thermite reaction shown in lectures: $Fe_2O_3(s) + 2Al(s) \rightarrow Al_2O_3(s) + 2Fe(s)$ Write a balanced equation for the reduction of CuO(s) to the base metal by Al(s). Given the following thermochemical data, evaluate the enthalpy change per gram of reactant for the CuO and Fe₂O₃ reactions above. $\Delta H_{\rm f}^{\circ}$ (kJ mol⁻¹) Compound Fe₂O₃ -821 Al_2O_3 -1668 -157 CuO Answer: Which would make the best rocket fuel on the basis of most energy provided per mass

of fuel (*i.e.* biggest "bounce per ounce")?

CHEM1001	2004-J-8	June 2004	22/01(a)
• Explain the following	g features of the lead acid stora	age battery.	Marks 3
It has a relatively co	nstant voltage.		
It needs no salt bridg	Je		
It can be recharged.			
• Consider the following	ng cell reaction.		3
Р	$b(s) + Sn^{2+}(aq) \implies Pb^2$	(aq) + Sn(s)	
		ion concentrations for which th of standard reduction potential	
	Answer		
L			l

CHEM1001	2004-J-9	June 2004	22/01(a)
	battery) has the following shor Zn ²⁺ (aq) MnO ₂ (s), Mn ₂ O ₃ (s		Marks 4
Which component of the	he battery is the anode?		
Give the balanced half	equation that takes place at the	e anode.	
-	he battery is the cathode?	authoda	
	Fiodine, I_2 , in water contains 0. we in a KI solution because of t	• •	n 4
	$\Gamma(aq) + I_2(aq) \checkmark$	I ₃ -(aq)	
converted to I_3 (aq). A	0 M) dissolves 12.5 g of iodine Assuming that the concentration equilibrium constant for the al	n of I_2 in all saturated solutions	is
	Answer:		

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions				
Fraction	Prefix	Symbol		
10^{-3}	milli	m		
10^{-6}	micro	μ		
10^{-9}	nano	n		
10^{-12}	pico	р		

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	М
10^{9}	giga	G

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

Standard Reduction Potentials, E°		
Reaction	E° / V	
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36	
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23	
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92	
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80	
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77	
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34	
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15	
$2H^{\scriptscriptstyle +}(aq) \ + \ 2e^{\scriptscriptstyle -} \ \rightarrow \ H_2(g)$	0 (by definition)	
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04	
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13	
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14	
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24	
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44	
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74	
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76	
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83	
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89	
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68	
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36	
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71	

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Gas Laws
$E = h u = h c / \lambda$	PV = nRT
$\lambda = h/mu$	$(P + n^2 a/V^2)(V - nb) = nRT$
$4.5k_{\rm B}T = hc/\lambda$	

Kinetics

 $k = Ae^{-Ea/RT}$ $t_{1/2} = \ln 2/k$ $\ln[A] = \ln[A]_{o} - kt$

Colligative properties

 $\pi = cRT$ p = kc $\Delta T_{f} = K_{f}m$ $\Delta T_{b} = K_{b}m$

Electrochemistry

 $\Delta G^{\circ} = -nFE^{\circ}$ Moles of $e^- = It/F$ $E = E^{\circ} - (RT/nF) \times 2.303 \log Q$ $E^{\circ} = (RT/nF) \times 2.303 \log K$ $E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at } 25 \text{ °C)}$

Polymers

$$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$$

Mathematics

ln x = 2.303 log x If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Radioactivity

 $A = \lambda N$ ln(N₀/N_t) = λt ¹⁴C age = 8033 ln(A₀/A_t)

Acids and Bases

 $pK_w = pH + pOH = 14.00$ $pK_w = pK_a + pK_b = 14.00$ $pH = pK_a + \log\{[A^-] / [HA]\}$

Thermodynamics & Equilibrium

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$
$$\Delta G = \Delta G^{\circ} + RT \ln Q$$
$$\Delta G^{\circ} = -RT \ln K$$
$$K_{\rm p} = K_{\rm c} (RT)^{\Delta \rm n}$$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудгоден Н 1.008																	2 неши Не 4.003
3	4											5	6	7	8	9	10
LITHIUM Li	BERYLLIUM Be											BORON B	CARBON C	NITROGEN N	OXYGEN O	fluorine F	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
sodium Na	MAGNESIUM Mg											ALUMINIU	¹ SILICON	PHOSPHORUS P	SULFUR S	CHLORINE Cl	argon Ar
22.99	24.31											26.98		30.97	32.07	35.45	39.95
19	20	21	22		24	25	26	27	28	29	30	31	32	33	34	35	36
potassium K	CALCIUM Ca	scandium Sc	TITANIU Ti		CHROMIUM Cr	MANGANESE Mn	Fe	COBALT CO	NICKEL Ni	COPPER Cu	ZINC Zn	GALLIUM Ga	GERMANIU Ger	M ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
39.10	40.08	44.96	47.8		52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40		42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rb	strontium Sr	YTTRIUM Y	ZIRCONI		MOLYBDENUM MO	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	PALLADIUM Pd	silver Ag	CADMIUM Cd	INDIUM INDIUM	Sn	ANTIMONY Sb	TELLURIUM Te	IODINE	xenon Xe
85.47	87.62	8 8.91	91.2		95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82			127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM CS	barium Ba		HAFNIU Hf		TUNGSTEN W	RHENIUM Re	OSMIUM OS	iridium Ir	PLATINUM Pt	GOLD Au	MERCURY Hg	THALLIUM	LEAD Pb	BISMUTH Bi	POLONIUM PO	ASTATINE At	radon Rn
132.91	Da 137.34		178.4		183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37		208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	1 105	106	107	108	109				•	•				
francium Fr	radium Ra		RUTHERFOR		seaborgium Sg	BOHRIUM Bh	hassium HS	meitnerium Mt									
[223.0]	[226.0]		[261		[266]	[262]	[265]	[266]									
	L 3																
	57		58	59	60	61	62	63	64	65		66	67	68	69	70	71
ANTHANIDI.	ES LANTHA		RIUM Ce	praseodymium Pr	NEODYMIUM Nd	PROMETHIUM Pm	samarium Sm	EUROPIUM Eu	GADOLINIUM GADOLINIUM	M TERBI		sprosium Dy	HOLMIUM HO	ERBIUM Er	THULIUM Tm	ytterbium Yb	LUTETIUM Lu
	138.		0.12	1 40.91	1 NU 144.24	[144.9]	5111 150.4	151.96	157.25			Dy 52.50	164.93	167.26	168.93	173.04	174.97
	89		90	91	92	93	94	95	96	97		98	99	100	101	102	103
ACTINIDES	ACTINI	UM THO	DRIUM T h	PROTACTINIUM	URANIUM U	NEPTUNIUM	PLUTONIUM D11	AMERICIUM		BERKELI	LIUM CAL	IFORNIUM Cf	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	A [227		2.04	Pa [231.0]	U 238.03	Np [237.0]	Pu [239.1]	Am [243.1]	Cm [247.1]			CI (52.1]	Es [252.1]	Fm [257.1]	Md [256.1]	No [259.1]	Lr [260.1]

PERIODIC TABLE OF THE ELEMENTS

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

22/01(b)