Q1. As$_2$O$_3$ potassium permanganate
KCH$_3$CO$_2$ hexaaquairon(II) ion
Na$_2$[CuCl$_4$] sodium dicyanoargentate(I)
[Cr(H$_2$O)$_3$Cl$_3$] ammonium chloride
[Fe(CN)$_6$]$_{3}^{3-}$ triaquachlorocopper(II) ion

Q2.
(a) (i) selenium (Se)
(ii) chlorine (Cl)
(b) (i) 1s2 2s2 2p6 (note that it’s an ion)
(ii) 1s2 2s2 2p6 3s2 3p6 4s1
(c) Paramagnetism arises from unpaired electrons.
\[
\begin{array}{cccccc}
3d & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow \\
\end{array}
\]
Ni$^{2+}$ has two unpaired electrons in the 3d orbitals
(d) Cl(g) + e$^-$ → Cl$^-$ (g) (NB must be gas phase)

Q3. Across a field, as more electrons occupy the same principal energy level, they are accompanied by additional protons in the nuclei. All outer electrons experience greater attraction to the nucleus (effective nuclear charge is increasing), and the radius decreases. After the noble gas in each row, the next atom (Group I) must use the next higher energy level for its last electron which is screened from the nucleus, so the radius increases sharply at that point. Repetition of this process means that the atomic radius increases down any group.

Q4.

<table>
<thead>
<tr>
<th></th>
<th>H--N--H</th>
<th>tetrahedral</th>
<th>trigonal pyramidal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![tetrahedral structure]</td>
<td>![trigonal pyramidal structure]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>![octahedral structure]</td>
<td>![octahedral structure]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>![linear structure]</td>
<td>![linear structure]</td>
<td></td>
</tr>
</tbody>
</table>
Q5. The 2s, 2pₓ, 2pᵧ, and 2pᵣ orbitals of the fluorine atom undergo a mixing process called hybridisation to produce four equivalent \(sp^3 \) hybrid orbitals. Three of these orbitals already contain 2 electrons (the non-bonding pairs on the fluorine). The remaining \(sp^3 \) orbital that contains 1 electron can overlap with the 1s orbital of a H atom to form a \(\sigma \)-bond.

\[
\begin{align*}
\text{unhybridised atomic orbitals} & \quad \text{hybridised atomic orbitals} \\
2p & \quad \uparrow \downarrow \uparrow \downarrow \uparrow \\
2s & \quad \uparrow \downarrow \\
1s & \quad \uparrow \downarrow \\
\end{align*}
\]

Q6. \(2\text{NH}_3 + \text{Ag}^+ \rightarrow [\text{Ag(NH}_3)_2]^+ \)

The equilibrium for this reaction lies far to the right, removing most of the \(\text{Ag}^+ \) from the solution and converting it to the complex ion, diamminesilver(I) ion.

Q7. For elements of Period 2, the only orbitals that are energetically available are the 2s and three 2p orbitals, which can accommodate only 8 electrons (2 in each orbital). For elements in Period 3 and above, \(d \) orbitals are energetically available to accommodate more electrons. This allows the valence level to expand beyond the limit of 8 electrons.

\(\text{SF}_6 \) and \(\text{PF}_5 \) contain 12 and 10 electrons in their valence levels, respectively.

Q8. \(\text{H}^- \) has two electrons around a single proton nucleus. There are no electrons inside the 1s orbital to screen the electrons, so they both experience a high effective nuclear charge.

Q9. Buffers contain a weak acid (HA) and its conjugate base (A⁻), both in significant amounts. Buffers resist change in pH by the following reactions.

\[
\begin{align*}
\text{HA} + \text{OH}^- & \rightarrow \text{H}_2\text{O} + \text{A}^- & \text{(removes added OH}^-) \\
\text{A}^- + \text{H}_3\text{O}^+ & \rightarrow \text{H}_2\text{O} + \text{HA} & \text{(removes added H}^+) \\
\end{align*}
\]

The pH of the buffer is determined by the \(pK_a \) of the weak acid and the ratio of [HA]:[A⁻]. The capacity of the buffer is determined by the amounts (concentrations) of HA and A⁻. The most effective buffer has [HA] = [A⁻] as this can remove \(\text{H}^+ \) or \(\text{OH}^- \) equally well.
Q10. (a) (i) pH = 2.43
(ii) pH = 11.12
(b) \([CH_3CO_2^-] = 1.1 \text{ M}\)

Q11. The reaction is \(CH_3COOH + \text{NaOH} \rightarrow H_2O + \text{NaCH}_3\text{CO}_2\)

The \(CH_3\text{CO}_2^-\) ion is a weak base reacting partially with water to give \([OH^-] > 10^{-7}\).

\(CH_3\text{CO}_2^- + H_2O \rightleftharpoons OH^- + CH_3\text{COOH}\)

Na\(^+\) ions do not change the pH.

Q12

At the half equivalence point, the amount of HA consumed equals the amount of A\(^-\) produced, and therefore \([HA] = [A^-]\).

For a weak acid, HA, \(K_a = \frac{[H^+] \times [A^-]}{[HA]}\)

When \([HA] = [A^-]\), \(K_a = [H^+]\) and pH = p\(K_a\).

Q13. From a knowledge of the titration type:

Strong acid v. strong base has equivalence point at pH = 7.

Strong acid v. weak base has equivalence point at pH < 7.

Weak acid v. strong base has equivalence point at pH > 7.

Choose an indicator that has a p\(K_a\) = pH at equivalence point.

Q14. ammonium ion < lactic acid < nitrous acid < hydrogen chloride
\(\text{NH}_4^+ < CH_3\text{CH(OH)COOH} < H\text{NO}_2 < H\text{Cl}\)

Q15. The hydrolysis of the hydrated Fe\(^{3+}\) ion increases \([H_3O^+]\) to > 10\(^{-7}\) M.

\([\text{Fe(H}_2\text{O})_6]^{3+} + H_2O \rightleftharpoons H_3O^+ + [\text{Fe(H}_2\text{O})_5\text{OH}]^{2+}\)
1. Dissolve in diethyl ether
2. Add 2 M NaOH, shake, separate

Add 2 M HCl, shake, separate

Add CH₃CO₂⁻ /CH₃⁻COO⁻/CH₃⁻C=O=O/C=CH₃
Many answers are possible. Biopolymers include proteins, DNA, starch, cellulose, rubber, etc. Proteins consist of polymeric chains of amino acids linked by the amide functional group (–CONH–).

Different proteins have different lengths and different R groups and different biological functions (e.g., as enzymes or for structure).

A: HBr in CCl₄ solvent
B: hot dilute NaOH in water
C: Cl₂ in CCl₄ solvent
D: N(CH₃)₃
E: Cr₂O₇²⁻ / H⁺

1,2-dichlorobutane

(S)-

a = (secondary) amine
b = aromatic ring

CH₃COOH + CH₃CH₂OH

CH₃

CH₃

CH₃

CH₃

CN

H